

Web Services,
Service-Oriented

Architectures, and
Cloud Computing

This page is intentionally left blank

Web Services,
Service-Oriented

Architectures, and
Cloud Computing

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

The Savvy Manager’s Guide

Second Edition

Douglas K. Barry

with

David Dick

Acquiring Editor: Andrea Dierna
Editorial Project Manager: Benjamin Rearick
Project Manager: Anitha Kittusamy Ramasamy
Cover Designer: Alan Studholme

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, 02451, USA

Copyright © 2013 Elsevier Inc. All rights reserved
Figures and Illustrations: © 2013 Douglas K. Barry

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our arrange-
ments with organizations such as the Copyright Clearance Center and the Copyright Licensing
Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and expe-
rience broaden our understanding, changes in research methods, or professional practices, or
medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information, methods, compounds, or experiments described herein.
In using such information or methods they should be mindful of their own safety and the safety
of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12398-357-2

Printed in the United States of America

13  14  15  16  17    10  9  8  7  6  5  4  3  2  1

For information on all MK publications
visit our website at www.mkp.com

Contents

Introduction� xv

Part I

	� Overview of Web Services, Service-Oriented Architecture,
and Cloud Computing� 1

1	 A Business Trip in the Not-Too-Distant Future	 3
	 The Business Trip	 3
	 Summary	 8

2	 Information Technology Used for the Business Trip	 9
	 Keeping Track of Detailed Customer Data	 10
	 Using Virtual Personal Assistants	 10
		 Managing C. R.’s Business Trip	 12
		 Augmenting C. R.’s Experiences	 12
	 Commoditizing Services	 12
	 Viewing All Services the Same Way	 13
	 Summary	 13

3	 Web Services and Service-Oriented Architectures	 15
	 Service-Oriented Architecture Overview	 17
		 Services	 17
		 Connections	 18
		 The Architecture in SOA	 18
	 Web Services Explained	 19
		 History of Web Services Specification	 19
		 Web Services Specifications	 22
		 The Opportunity and Importance of
		 Standardized Semantic Vocabularies	 29
	 Service-Oriented Architecture Explained	 29
		 Relationship of Web Services and SOA	 30
		 Identification and Design of Services	 30
		 Service-Oriented Architecture	 31
	 Summary	 33

v

vi   Contents

4	 Cloud Computing	 35
	 Blurring of Internal and External Services	 37
	 Organizations of Any Size Can Use a Service-Oriented
	 Architecture with Cloud Computing	 38
	 The Cloud	 39
	 Types of Clouds	 41
	 Categories of Cloud Providers	 42
	 Summary	 44

Part II
	� Technical Forces Driving the Adoption of Web Services,

Service‑Oriented Architectures, and Cloud Computing� 45

5	 Technical Forces Driving the Adoption of
	 Web Services	� 47
	 Force Field Analysis Overview	 48
	 Adopting Standard Data Element Definitions	 50
	 Adopting a Standard Communications Protocol	 51
	 Adopting Web Services	 52
	 Summary	 54

6	 Technical Forces Driving the Adoption
	 of SOA	 55
	 Adopting Standard, Enterprise-Wide Software	 56
	 Adopting an Object Request Broker	 57
	 Adopting an Enterprise Data Warehouse	 59
	 Adopting an Enterprise Service Bus	 62
		 Message Routers	 62
		 Adapters	 63
	 Adopting a Service-Oriented Architecture	 67
	 Summary	 70

7	 Technical Forces Driving the Adoption of
	 Cloud Computing	� 71
	 Adopting Software as a Service (SaaS)	 72
	 Adopting Platform as a Service (PaaS)	 74
	 Adopting Service-Oriented Architecture with
	 Cloud Computing� 76
	 Summary	 79

Contents   vii

Part III
	� Managing Change Needed for Web Services,

Service-Oriented Architectures, and Cloud Computing	 81

8	 Change Issues	 83
	 Change	 85
	 Technical Change Issues Diminishing	 85
	 Resistance to Change	 85
	 Forms of Resistance	 88
		 Lack of Training/Understanding	 89
		 Power of Internal “Expert”	 89
		 Inertia—Why Change?	 90
		 Feeling that Jobs May Be Threatened	 90
		 Not Invented Here	 91
		 Our Problems Are Special	 91
		 Loss of Familiarity, Competence, and Control	 91
	 Suggestions for Addressing Resistance to Change	 92
		 Selecting the Right People	 92
		 Use a Second Set of Eyes	 93
		 Really Listen	 93
		 Communicate at Many Levels	 94
		 Seek Appropriate Avenues to Involve People	 94
		 Get Resistance Out in the Open	 94
		 Ask for Participation and Form Partnerships	 95
	 Some Resistance Scenarios	 95
		 But It’s So Complicated!	 95
		 Guerilla Tactics	 98
		 More Guerilla Tactics	 100
		 The Elephant in the Room	 101
	 Worksheet for Resistance Issues and Suggestions	 102
	 Consolidated Analysis for Adopting an SOA with Cloud Computing	 102
	 Summary	 105

9	 Tips for Managing Change Issues During Development	 107
	 Design as Little as Possible	 108
		 Buy a System or Use One or More Existing Services	 108
		 Buy a Model or Adopt a Semantic Vocabulary	 108
	 Write as Little Code as Possible	 109
	 Reduce Project Scope	 110
	 Use a Methodology	 110

viii   Contents

	 Use a Second Set of Eyes	 111
	 Use Small Teams	 111
	 Summary	 112

10	 Managing Change with Incremental SOA Analysis	 113
	 Tools	 114
		 Force Field Analysis	 114
		 Worksheet for Resistance Issues and Suggestions	 114
		 Decomposition Matrix	 115
	 Five Principles for the Incremental SOA Analysis	 121
	 Incremental SOA Analysis	 122
		 Business Process Analysis Lane	 123
		 Candidate Project Analysis Lane	 124
		 Deployment Selection Lane	 125
		 Select a Project with the Best Chance of Success	 125
		 Deployment Lane	 125
		 Vocabulary Management Lane	 126
	 Summary	 127

Part IV

	� Getting Started with Web Services, Service-Oriented Architectures,
and Cloud Computing� 129

11	 Getting Started with Web Services	 131
	 All Web Services Connections Look the Same	 132
	 The Impact of Web Services	 132
	 Use of Web Services will Likely Spur Innovation	 133
	 Start by Experimenting with Web Services	 133
		 Use an External Service	 133
		 Develop an Internal Service	 134
		 Exchange Data Between Existing Systems	 135
		 Use an ESB	 136
		 Staffing Issues	 137
		 Likely Change Issues	 137
	 Adapt Existing Systems to Use Web Services	 138
		 Enterprise Database Warehouse	 138
		 Connect Components to Web Services	 140
		 Additional Systems	 141
		 Staffing Issues	 142
		 Likely Change Issues	 142

Contents   ix

	 Vision of the Future	 142
	 Summary	 143

12	 Getting Started with Service-Oriented Architectures	 145
	 Establish a Service-Oriented Architecture	 146
		 Design Considerations	 146
		 Staffing Issues	 148
		 Likely Change Issues	 149
	 What If Things Are Not Going as Planned?	 150
		 The Data Warehouse Was Growing Much Faster than Expected	 150
		 The Response Time of the Services Provided by an Internal
		 System Was Inadequate	 151
		 Putting It All Together	 157
	 Services and Service-Oriented Architectures	 157
	 SOA Governance	 161
	 Summary	 162

13	 Getting Started with Cloud Computing	 163
	 Expand your Internal SOA to Include External Services	 164
		 Staffing Issues	 164
		 Likely Change Issues	 164
	 Governance Considerations	 165
		 Legal Issues	 165
		 Business Issues	 165
		 Technical Issues	 165
	 Data Center Considerations	 166
		 Availability Issues	 166
		 Disaster Recovery Issues	 167
	 Examples of Technical Issues Related to Availability	 167
		 Failover Options for Messaging and Databases	 167
		 Database Availability Options	 168
		 Replication Options for Messaging and Databases	 169
	 Cloud Brokers	 170
	 Should You Be Your Own Cloud Provider?	 170
	 Summary	 170

14	 Revisiting the Business Trip in the Not-Too-Distant
	 Future� 171
	 Services for C. R.’s Business Trip	 171
	 The Future for C. R.’s Organization	 174
	 Summary	 175

x   Contents

Part V

	 Reference Guide� 177

15	 Semantic Vocabularies	 179
	 Common Semantic Vocabularies	 180
		 Address XML	 181
		 Computing Environment XML	 181
		 Content Syndication XML	 182
		 Customer Information XML	 182
		 Electronic Data Interchange (EDI) XML	 183
		 Geospatial XML	 183
		 Human XML	 184
		 Localization XML	 184
		 Math XML	 184
		 Open Applications Group Integration Specification (OAGIS)	 185
		 Open Office XML	 185
		 Topic Maps XML	 185
		 Trade XML	 185
		 Translation XML	 186
		 Universal Business Language (UBL)	 186
		 Universal Data Element Framework (UDEF)	 186
	 Specific Semantic Vocabularies	 186
		 Accounting XML	 187
		 Advertising XML	 187
		 Astronomy XML	 187
		 Building XML	 187
		 Chemistry XML	 188
		 Construction XML	 188
		 Education XML	 188
		 Finance XML	 188
		 Food XML	 189
		 Government XML	 189
		 Healthcare XML	 190
		 Human Resources (HR) XML	 190
		 Instruments XML	 190
		 Insurance XML	 191
		 Legal XML	 191
		 Manufacturing XML	 192
		 News XML	 192
		 Oil and Gas XML	 193
		 Photo XML	 193

Contents   xi

		 Physics XML	 193
		 Publishing XML	 193
		 Real Estate XML	 194
		 Telecommunications XML	 194
		 Travel XML	 194

16	 Terminology	 195
	 Adapters	 198
	 Agents	 198
	 Analytics	 198
	 Application Programming Interface (API)	 198
	 Application Server	 198
	 Atomic Service	 199
	 Big Data	 199
	 Business Intelligence (BI)	 199
	 Business Process Execution Language (BPEL)	 199
	 Business Process Modeling Notation (BPMN)	 200
	 Business Process Query Language (BPQL)	 200
	 Business Process Specification Schema (BPSS)	 200
	 Caching	 200
	 Cloud	 200
	 Collaboration Protocol Profile/Agreement (CPP/A)	 201
	 Community Cloud	 201
	 Composite Service	 201
	 CORBA	 201
	 Data Cleansing	 201
	 Data Warehouse	 202
	 DCOM	 202
	 ebXML Registry	 202
	 Electronic Data Interchange (EDI)	 202
	 Enterprise Service Bus (ESB)	 203
	 eXtensible Access Control Markup Language (XACML)	 203
	 eXtensible Rights Markup Language (XrML)	 203
	 eXtensible Stylesheets Language (XSL)	 203
	 Extract, Transform, and Load (ETL)	 203
	 Failover	 204
	 HTTP	 204
	 Hybrid Cloud	 204
	 Infrastructure as a Service (IaaS)	 204
	 Internet Inter-ORB Protocol (IIOP)	 204
	 Java API for XML Parsing (JAXP)	 204

xii   Contents

	 JSON	 205
	 Load Leveling	 205
	 Loosely Coupled	 205
	 Mapping	 205
	 Mashups	 205
	 Message Router	 205
	 Meta-Object Facility (MOF)	 206
	 Middleware	 206
	 Model Driven Architecture (MDA)	 206
	 .NET	 206
	 NoSQL Database Management System	 206
	 Object Request Broker (ORB)	 207
	 OMG Interface Definition Language (IDL)	 207
	 Partner Interface Process (PIP)	 207
	 Platform as a Service (PaaS)	 207
	 Public Cloud	 207
	 Registry	 208
	 REgular LAnguage Description for XML (RELAX)	 208
	 RELAX NG	 208
	 Replication	 208
	 Representational State Transfer (REST)	 208
	 Resource Description Framework (RDF)	 209
	 RosettaNet Implementation Framework (RNIF)	 209
	 Schematron	 209
	 Security Assertion Markup Language (SAML)	 209
	 Service	 209
	 Service-Oriented Architecture (SOA)	 209
	 Service Provisioning Markup Language (SPML)	 210
	 SOAP	 210
	 Software as a Service (SaaS)	 210
	 Tree Regular Expressions for XML (TREX)	 210
	 Unified Modeling Language (UML)	 211
	 Uniform Resource Identifier (URI)	 211
	 Universal Data Model	 211
	 Universal Description, Discovery, and Integration (UDDI)	 211
	 Virtual Private Cloud	 211
	 Web Distributed Data Exchange (WDDX)	 212
	 Web Service Endpoint Definition (WSEL)	 212
	 Web Services Component Model	 212
	 Web Services Conversation Language (WSCL)	 212
	 Web Services Description Language (WSDL)	 212

Contents   xiii

	 Web Services Experience Language (WSXL)	 213
	 Web Services Flow Language (WSFL)	 213
	 Web Services for Interactive Applications (WSIA)	 213
	 Web Services for Report Portals (WSRP)	 213
	 Web Services User Interface (WSUI)	 214
	 Workflow	 214
	 XLANG	 214
	 XML Common Biometric Format (XCBF)	 214
	 XML Encryption	 214
	 XML Key Management Specification (XKMS)	 215
	 XML Linking Language (XLink)	 215
	 XML Namespaces	 215
	 XML Path Language (XPath)	 215
	 XML Pointer Language (XPointer)	 215
	 XML Protocol (XMLP)	 215
	 XML Schema	 216
	 XML Signature	 216
	 XSL Formatting Objects (XSL-FO)	 216
	 XSL Transformations (XSLT)	 216
	 XQuery	 216

Bibliography� 217
Index� 219

This page is intentionally left blank

xv

Douglas K. Barry with David Dick

One of the toughest jobs for managers today is keeping up with the rapid changes
in technology. An important change in technology is that the future of software will
involve service-oriented architectures (SOAs) with some form of cloud computing.
More and more services are available on the Internet. Nearly every day we discover
new opportunities to connect these services to create SOAs. These SOAs will require
less custom software in organizations, but will likely demand more creativity in the
selection and assembly of services. This is a natural evolution of software technology
and will be explained in this book.

This book is a guide for the savvy manager who wants to capitalize on the wave
of change that is occurring with Web services, SOAs, and, more recently, cloud
computing. The changes wrought by these technologies will require both a basic

Contents
Business Opportunities Addressed	 xvi
Structure of This Book	 xvi

Introduction

xvi   Introduction

grasp of the technologies and an effective way to deal with how these changes will
affect the people who build and use the systems in our organizations. This book
covers both issues. Managers at all levels of all organizations must be aware of both
the changes that we are now seeing and ways to deal with issues created by those
changes.

The intent of this book is to give you an opportunity to consider some ideas and
advice that just might make it easier for your organization to realize the potential
benefits in Web services, SOAs, and cloud computing. No crystal ball exists to tell us
the services that will be available tomorrow. Undoubtedly, there will many innova-
tive services that we cannot envision at this time. For that reason, this book presents
a straightforward approach that will help you get your organization ready to take
advantage of a SOA—in whatever form it takes.

This is a nontechnical book on a technical subject. It assumes no prior knowledge
of the technology. It is written with a high-level view at the beginning of the book.
As the book progresses, technical details are introduced and explained. You can stop
reading at any point once you have enough understanding for your use.

Business Opportunities Addressed

The technologies and concepts described in this book can:

n	 Expand your information technology options.
n	 Make your information technology systems more flexible and responsive.
n	 Reduce development time.
n	 Reduce maintenance costs.

This book will explain why these promises can be fulfilled. Read through to the
end of Part II to see why the technology discussed will eliminate most technologi-
cal barriers to integrating systems. Part III discusses why the biggest challenge for
managers is handling the people issues related to this change. That part of the book
also provides tips on how to make development easier.

Structure of This Book

Part I (Chapters 1–4) begins with a high-level story of how a person on a business
trip interacts with a SOA based on Web services and cloud computing. Each of these
technologies is then explained in more detail. As Part I progresses, technical details
are added to the story in a “peeling of the onion” approach.

Part II (Chapters 5–7) deals with the technical forces driving the adoption of Web
services, SOAs, and cloud computing. Change in any organization can be challenging.

Introduction   xvii

This part looks at the forces that help or hinder the technical aspects of change using
a technique called force field analysis. Force field analysis is applied to various inte-
gration techniques related to Web services, SOAs, and cloud computing.

Part III (Chapters 8–10) focuses on the people involved in the change. People
worry about the future of their jobs and learning new tools and technologies. An
organization must address these issues and concerns to achieve success. This part
uses the force field analysis introduced in Part II. Here, the analysis deals with man-
aging the human aspect of the change that occurs with the adoption of a SOA with
cloud computing, and provides tips on how to make development easier. Chapter 10
introduces an incremental SOA analysis technique that aims to improve the project
selection process in a way that also improves the chance of success for the selected
project.

Part IV (Chapters 11–14) shifts to getting started with Web services, SOAs, and
cloud computing. Chapter 11 provides three basic experiments that use Web services
and then uses the story of the business trip in Part I to address more advanced uses
of Web services. It ends with a vision of what Web services might mean for the
future. Chapter 12 provides design concepts and considerations along with staff-
ing and change issues to take into account when establishing a SOA. It illustrates
how properly designed service interfaces can make it easier for an organization to
respond to the chaos of modern business. It ends with a discussion of SOA gover-
nance. Chapter 13 discusses a way to evaluate external services and the systems and
hardware related to cloud computing that support those services. Chapter 14 sum-
marizes the Web services, SOAs, and cloud computing related to the business trip
described in Part I.

Part IV (Chapters 15–16) is a reference section. It lists various semantic vocabu-
laries and provides a quick reference guide for the terminology used in this book.

This page is intentionally left blank

PA
RT I

Overview of
Web Services,
Service-Oriented
Architecture, and
Cloud Computing
The first part of this book begins with a story that illustrates how a service-
oriented architecture using Web services with cloud computing might be used
for planning and taking a business trip in the not-too-distant future. The chapter
following the story outlines a high-level explanation of the technology and
related standards involved in this trip. That leads to the introduction of Web
services and service-oriented architectures in Chapter 3. Chapter 4 ends this
part with an overview of cloud computing.

This page is intentionally left blank

Web Services, Service-Oriented Architectures, and Cloud Computing. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00001-4

3

This is a story of a business trip in the not-too-distant future. It illustrates how a business
traveler relies on service-oriented architectures. Those service-oriented architectures
use Web services along with cloud computing.

The Business Trip

This is the story of C. R., which is short for Connected Representative. In this story,
C. R. is about to take a business trip to Europe. This trip is much like any business
trip in that it will involve visiting multiple customers in different cities over three or
four days and responding to routine tasks from the office. At one time, C. R. carried a
cell phone and a laptop on business trips. Nowadays, C. R. carries just a smartphone.
On this trip, C. R. will also wear his regular eyeglasses that are augmented with a

Contents
The Business Trip	 3
Summary	 8

A Business Trip
in the Not-Too-
Distant Future

C
hapter 1

4   A Business Trip in the Not-Too-Distant Future

heads-up display, an earpiece, and a camera. The eyeglasses communicate with his
smartphone.

To start planning his trip, C. R. uses a smartphone application that is part of his
virtual personal assistant (VPA). He asks the VPA to find all customers near each
stop in his trip and to rank them based on criteria from his organization’s business
intelligence (BI)/analytics system. Although there are specific customers he wants to
visit, he also wants to make sure he is keeping in touch with as many customers as
he can. Using the list provided by the VPA, C. R. identifies the customers he might
see and makes minor changes in the ranking of customers for arranging meetings.
He adds the dates for when he wants to leave and return. Then he asks the VPA to
arrange meetings. The VPA sends the meeting invitations. Some invitations are by
email and others use C. R.’s social network account; the VPA determines the best way
to contact the customers.

Within a few minutes of sending the meeting invitations, one of C. R.’s customers
confirms the invitation and asks if he is available for dinner. C. R. accepts the invita-
tion. The VPA updates the travel itinerary and calendar. The VPA will keep C. R.
informed of any changes that might occur throughout the trip.

As the day progresses, C. R. receives additional messages. The VPA uses the mes-
sages to update C. R.’s calendar. Within a few hours, the VPA delivers information
about his flights, transportation arrangements, and hotel reservations in three cities.

The term Web services can be confusing. It is often used in different ways. Compound-
ing this confusion is the term services, which has a different meaning than Web services.

In this book, Web services is defined as a means to connect services together. A ser-
vice is software that performs some computing function and has some type of underlying
computer system. Although not required, cloud computing may provide that underlying
computer system.

The assembly of services—internal and external to an organization—makes up a
service-oriented architecture (SOA). This is yet another confusing term, since SOA is a
design and development style rather than an actual architecture. Nevertheless, the result
of that development is commonly referred to as an architecture.

Let’s depart from this story here for a moment. There are two components to C. R.’s VPA.
One component is on his smartphone, which has already been mentioned. Another com-
ponent exists in the public cloud. This means C. R. can access his VPA using other devices
(e.g., someone else’s phone or a desktop) should he desire. It also allows the VPA to help
manage his life even if C. R.’s smartphone is turned off or unreachable. Many of the travel
arrangements described here are handled by the VPA component in the public cloud.

The Business Trip   5

C. R. opens his calendar on his smartphone to check his itinerary. The arrangements
are fine and he confirms the plans. At this point, his manager receives an itinerary
of C. R.’s trip on her calendar that includes the departure and return trips along with
hotels where C. R. will be staying. Her VPA alerts her of the update along with a list
of assignments C. R. is supposed to complete in the near term. This list prompts her
to send a message reminding C. R. to review several documents in the documentation
repository in his organization’s virtual private cloud. C. R. will browse these docu-
ments sometime during his trip. C. R.’s spouse also receives updates to her personal
calendar that include the departure and return trips along with hotels where C. R.
will be staying and hotel phone numbers inserted in the appropriate days. This is
something she likes to have handy when C. R. is traveling. Her VPA did not alert her
of the change since it knows this type of calendar update from C. R. is not something
requiring a notification to C. R.’s spouse.

The itinerary created by the VPA includes links to information about the custom-
ers to be visited (including addresses). C. R.’s VPA ensures the address information
is stored locally on his smartphone. The global positioning system (GPS) on his
smartphone uses these addresses while C. R. is driving.

The morning that C. R. is to depart, his smartphone awakens him two hours early
(C. R. uses the alarm clock feature of his phone and his VPA knows when he expects
to get up). The reason for waking C. R. early is that there is a serious accident with a
chemical spill on the direct route C. R. would normally take to the airport. The VPA
recognized that C. R. is going to need more time to get to the airport. Once in his car,
the VPA suggests an alternate route. This is based on the traffic information provided
as a service by the local department of transportation (DOT). The DOT service tries
to make the most efficient use of the routes around the airport, given that the chemi-
cal spill will take many hours to clean up. To route traffic, the DOT service uses
information provided by thousands of VPAs, the clients of which will be traveling
to or near the airport. The VPAs and the DOT service negotiate travel routes that the
VPAs then suggest as alternate travel routes to their clients (like C. R.).

Thanks to C. R.’s VPA, he arrives at the airport, in time to check in his baggage,
pass through security, and eat lunch before boarding his flight.

The first stop on his trip is Bonn, Germany. As C. R.’s plane approaches the gate
at the Cologne Bonn Airport, the VPA recognizes it by the geolocation and also

The VPA takes advantage of application programming interfaces (APIs) that use stan-
dard semantic vocabularies (the data and the names to use when describing the data).
Airlines, hotel chains, car rental companies, restaurant reservation systems, calendaring
systems, and many other services on the Internet have agreed to use standard semantic
vocabularies. Recently, C. R.’s organization added similar APIs to the repository it main-
tains in its virtual private cloud so that employees’ VPAs can interact with the repository.

6   A Business Trip in the Not-Too-Distant Future

determines that this is C. R.’s first visit to this airport. So, the VPA prepares to pro-
vide C. R. with help to navigate through the airport. As C. R. departs the plane, the
VPA uses the arrival gate information from the airline service and a map of the
airport to tell C. R. via his earpiece how to walk to customs. Once through customs,
the VPA guides C. R. to baggage and then to a car. On the way, VPA checks C. R. in
with his car rental service and C. R.’s phone receives details about where he can pick
up his rental car.

At the parking garage, C. R.’s VPA displays the stall number and car license
number on the heads-up display of C. R.’s eyeglasses. When leaving the garage, the
security guard scans a code on C. R.’s smartphone and his driver’s license to confirm
authorization to leave with the rental car. C. R. will not have trouble navigating to his
appointments because his glasses and smartphone provide a voice-activated personal
navigation system with turn-by-turn guidance, voice instructions, and real-time traf-
fic reports. C. R.’s VPA filters the traffic reports so that C. R. only hears what the VPA
“knows” he will consider useful. The VPA has chosen a hotel in the heart of Bonn
where C. R. will stay the evening, and it is located near a restaurant that the VPA also
“knows” C. R. will like.

While driving, C. R.’s VPA reports a significant problem that a customer is hav-
ing with one of the products from C. R.’s organization. This is good to know before
going into his first meeting. C. R. asks his VPA to collect recent information about
this customer and the problem with the product. Once C. R. is in his room, the VPA
reminds him that the information he requested is now available from both the cus-
tomer relationship management (CRM) service that resides in the public cloud and
the organization’s repository in its virtual private cloud. C. R. also calls the represen-
tative assigned to the problem to ask for any additional information before tomor-
row’s meeting.

After a day of visiting customers, C. R. forgets where he parked his car in a large
parking ramp. C. R. easily finds the car because the rental company equipped the car
with location tracking. C. R.’s VPA accesses the rental car service in the public cloud
and provides C. R. with audio and visual instructions to where the car is parked.

From Bonn, C. R. takes an express train to Paris, France. When C. R. arrives
at Gare du Nord, he is eager to get to the hotel and rest. This station is a busy
metropolitan destination for travelers. Using the online taxi tracking service, the
VPA determines that the crush of arrivals means there are no available taxi stands
without a long waiting line in the proximity of the train station. The VPA directs
C. R. to a nearby Paris Métro stop with guidance to the route to take and where to
get off near his hotel. C. R. pays the Métro fare using his smartphone.

At the hotel, C. R. receives a telephone call from a customer inviting him to lunch
at a bistro a short walk from the hotel. C. R. phones the customer and confirms that
he would be delighted to have lunch and confirms the time. When C. R. gets outside
the hotel, his glasses display the directions to the bistro.

The Business Trip   7

C. R. arrives at the bistro a few minutes before the customer. Arriving early allows
C. R. to review background information about the customer the VPA provides him
from his organization’s repository. C. R has never met this customer before, but he is
not worried about not recognizing him because his smartphone can match the tele-
phone number with the geolocation of the customer’s cell phone. When the customer
arrives, the smartphone sends a signal to C. R. and displays a recent photo of the
customer from a social networking site on his glasses. C. R. stands up from his chair
to greet the customer.

After an aperitif and pleasantries, the waiter brings the menus. The menu is in
French and although C. R. cannot read French, his glasses allow him to read the menu
in English. He places his finger under an item on the menu and hears the translation
in his earpiece just loud enough that only he can hear. The VPA also checks an online
allergy service and informs C. R. if there is a chance the menu item might trigger any
of C. R.’s food allergies.

After a busy day of visiting customers, C. R. takes the Métro to the Louvre
Museum. His VPA provides directions. From past visits to museums, the VPA has
learned that C. R. particularly likes works by Impressionist painters and indicates
where they can be found in the museum. At the Louvre, his glasses sense when he
stops in front of a particular artwork, then his VPA works with a cloud-based service
to recognize the artwork and provide commentary on the art. The VPA knows C. R.
is particularly interested in the year something was painted, background on the artist,
and who influenced the artist’s style. The commentary plays quietly in his earpiece at
a volume no one else can hear because, based on his geolocation, the VPA “knows”
C. R. is in a museum.

The next stop is London, England. From Paris, C. R. takes the Eurostar train
under the English Channel to London’s St. Pancras Railway Station. In prepara-
tion for arrival, the VPA recommends that taking the Underground to the customer’s
office is faster than a taxi and provides the quickest Underground lines to take and
waiting times. The VPA will provide commentary and walking directions out of the
Underground and through the streets of London.

C. R. receives a notification from the VPA of a scheduling change and that he
should check his calendar. He opens his calendar on his smartphone and sees that
the last customer he wanted to see has canceled (a link inserted by the VPA to a cor-
responding e-mail message explains why, and asks if he is available for a video chat
instead) and that two different customers were added to the trip (based on his earlier
rankings). These customers are in a city outside of London. This requires changing
C. R.’s current hotel reservation, arranging a hotel in the new city, and making train
reservations to the city (all arranged by the VPA). The VPA sends notifications to
C. R.’s spouse and manager as well.

With the permission of his customers, C. R. records every meeting (sometimes
with photos or video using his glasses). After each meeting, C. R. dictates additional

8   A Business Trip in the Not-Too-Distant Future

observations and the VPA sends his observations and the recorded meeting to an
online service that reduces it to a summary. Later in the trip, C. R. reviews the sum-
mary and makes minor changes before submitting it to his organization’s repository.

With some customers, C. R. was able to sign contracts. He scanned the contracts
with his smartphone. A scanning service converted them to PDFs and added the
appropriate identification details for use by his organization’s BI/analytics system.
The VPA routed the scanned contracts to the CRM service, the repository, and the
appropriate people in C. R.’s organization so that they could immediately start work-
ing on the agreements.

The next morning, C. R. receives a notification that his flight is canceled. The
airline, however, offers him an alternate flight that will leave early the next morn-
ing. C. R. confirms the reservations. The VPA arranges a hotel room near the airport
and sends a text message to C. R.’s spouse describing the changed plans. C. R. uses
this free time to have a video chat with the customer he could not meet earlier in the
week.

Throughout the trip, the VPA collected C. R.’s expenses. He used his smartphone
to pay for everything except for small cash expenses that C. R. told his VPA to record
as he went. The VPA interacted with a service that manages expense reports and
used one of the expense report formats approved by C. R.’s organization. When C. R.
returned to the office, he reviewed the expenses, made a few minor changes, and
submitted it to the expense report service. The service submitted the necessary infor-
mation to the external payroll processing service used by C. R.’s organization. C. R.
will receive his expense reimbursement on his next payroll check.

Summary

A lot of technology is involved behind the scenes of this story. There obviously need
to be agreements and standards among organizations to make this level of data inter-
change possible. This technology and the standards make it possible for C. R. to be
“connected” on his business trip. Chapter 2 provides a high-level explanation of the
technology and standards that made this possible.

By now, you have probably noticed that C.R’s organization has very current and detailed
information on every customer contact. The organization found that in its industry, this
makes a big difference in how well employees can support their customers. It also identi-
fies any need that customers might have for additional products or services. This customer
information is aggregated from multiple sources, both internal and external to C. R.’s
organization.

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00002-6

9

This chapter provides a high-level explanation for the technology and standards used
for the business trip described in Chapter 1. Many services and supporting tech-
nologies came together in the business trip story, including documents and customer
data from internal systems, an external customer relationship management (CRM)
service, calendar services, a travel website, a car rental service, and more.

Contents
Keeping Track of Detailed Customer Data	 10
Using Virtual Personal Assistants	 10
	 Managing C. R.’s Business Trip	 12
	 Augmenting C. R.’s Experiences	 12
Commoditizing Services	 12
Viewing All Services the Same Way	 13
Summary	 13

Information
Technology
Used for the
Business Trip

C
hapter 2

10   Information Technology Used for the Business Trip

Keeping Track of Detailed Customer Data

Remember that C. R.’s organization decided it was important to keep a significant
amount of data on each of its customers. C. R.’s organization did not always have data
in one place. Before the organization decided to develop a service-oriented architec-
ture (SOA), some customer contact information was in its CRM system, some data
was in the accounting system, and still more data was scattered in other internal
systems and in such places as the representative personal records and trip reports.

C. R.’s organization first tried to consolidate its customer data using an enterprise data
warehouse. As part of that process, C. R.’s organization decided it was time to establish
some standards that would help it when using Web services. The first standards effort was
to research semantic vocabularies and find one it could adopt and augment with vocabulary
unique to the organization. The second effort was to decide on the Web services message
protocol that it would use with this semantic vocabulary for its internal systems and ser-
vices. This protocol was used to communicate with the new enterprise data warehouse.

It was not long after establishing the enterprise data warehouse that C. R.’s orga-
nization realized that it underestimated the growth of the data and that the forecasted
demands on the business intelligence (BI)/analytics systems would outstrip the
resources of its data center. So, it chose to work with a virtual private cloud provider
that had a database management system that could handle the “big data” C. R.’s orga-
nization was generating on its customers. The cloud provider had the flexibility—
called elasticity—to devote more resources on demand for the peak uses of the BI/
analytics services. Also, the tools the cloud provider had made it easy to develop cus-
tom smartphone applications that use the application programming interfaces (APIs)
needed to access the data and interact with the BI/analytic services. The virtual private
cloud provided C. R.’s organization with the level of security that it wanted for its data.

Using Virtual Personal Assistants

Virtual personal assistants (VPAs) are central to this story. C. R’s VPA is software
and, in our story, it uses artificial intelligence to reason and learn from experience.
The wealth of connections available on the Internet makes it possible to create vari-
ous types of VPAs that can take advantage of those connections.

Semantic vocabularies and Web service messaging protocols are critical to understanding
service-oriented architectures. They are explained in Chapter 3.

Cloud providers and cloud computing are discussed in Chapter 4.

Using Virtual Personal Assistants   11

Figure 2.1 illustrates that C. R.’s VPA has a component that is a service much like
other services in the cloud. C. R.’s smartphone interacts with the VPA component in
the cloud. The VPA service in the cloud acts independently.

Language
translate

Travel

26 27 28 29 30 31

26 27 28 29 30 31
19 20 21 22 23 24

CRM

Hotel

Hotel

Hotel

Car rental
C. R.

January
S M T W T F S

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
25January

S M T W T F S
1 2 3 4

5 6 7 8 9 10 11
12 13 14 15 16 17 18

January
S M T W T F S

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

VPAs/Calendars for
manager, spouse, and
customers

C. R.’s Calendar

Smartphone

Airlines

Internal
system

Internal
system
Internal
system

Internal
system

Internal
system

Internal
system

Internal
system
Internal
system

Internal
system

Public Cloud

Virtual
Private
Cloud

BI/Analytics
Doc

scanning

26 27 28 29 30 31
January

S M T W T F S
1 2 3 4

5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Meeting
summary

Allergies

Food

Art

ingred.

Museums

DOT

Airports

Trains

Under-

Métro

ground

Taxis

Social
network

Expenses

component
VPA

Repository

Figure 2.1  Services and data interchange related to C. R.’s business trip.

12   Information Technology Used for the Business Trip

Managing C. R.’s Business Trip

C. R.’s VPA managed the business trip. It was able to gather information from dif-
ferent services, make travel arrangements, monitor data feeds, “jump” in at the
last moment when needed, and provide C. R. with just the information he needed.
Thereby, C. R. was able to do what he does best (schmoozing with customers) with-
out overburdening him with having to manage his trip himself or sort through a flood
of information.

One illustration of the VPA’s role with various services was how it “knew” to
monitor traffic information from the local Department of Transportation (DOT) the
morning C. R. needed to get to the airport. The accident with a chemical spill that
closed a road was also noted by thousands of other VPAs. The DOT service had the
capability to negotiate with all those VPAs to come up with a plan to route traffic
around the accident. All that C. R. had to do was realize why his wake-up alarm was
earlier than expected, and to follow his VPA’s suggested detour to the airport that the
DOT provided to the VPA.

Augmenting C. R.’s Experiences

C. R.’s VPA also interacted with his eyeglasses that were augmented with a heads-up
display, an earpiece, and a camera. His VPA was able to “appear” whenever needed
by accessing a myriad of services in the cloud so that it could help C. R. negotiate the
city streets, avoid food allergies, translate a menu from French to English, learn more
about the art he was viewing, and so on.

Commoditizing Services

Some services are likely to become commodities. Car rental services, for example,
will need to agree on certain standards so that they can interact with travel agency
and airline services. Those standards could very well mean that it is easy for any
consumer (or VPA) to switch car rental services.

In the introductory story in Chapter 1, there are similar standards for cloud-based
services for hotels, trains, subways, airports, museums, and so on.

Of course, for this to happen there needed to be standardization of the types of messages
and data exchanged. For the sake of this story, we will assume that the various industry
consortia were able to develop those standards.

Viewing All Services the Same Way   13

Viewing All Services the Same Way

Although the semantic vocabulary and message protocol may vary among services,
in a sense, they all appear the same. C. R. or his VPA do not need to know if a service
is in a public cloud, a virtual private cloud, or supported by an aging internal system
in C. R.’s organization. The interaction is similar and there is no need to know where
a service is physically located.

Summary

In all likelihood, there are probably many hundreds of services used during C. R.’s
business trip. There are also SOAs assembled from the services. C. R.’s organization
has an SOA that mixes public and virtual private cloud computing with the non-cloud
computing of its internal systems. Many of the services shown may have their own
SOA. Among those that might include the airlines, car rental, and local DOT. The
VPA component also undoubtedly has a sophisticated SOA. Chapter 3 will explain
SOAs and Web services.

This page is intentionally left blank

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00003-8

15

Service-oriented architecture is a way to design, implement, and assemble services
to support or automate business functions. Various Web services can be used to con-
nect services. This chapter first explains Web services connections. It begins with

Contents
Service-Oriented Architecture Overview	 17
	 Services	 17
	 Connections	 18
	 The Architecture in SOA	 18
Web Services Explained	 19
	 History of Web Services Specification	 19
	 Web Services Specifications	 22
	 The Opportunity and Importance of Standardized Semantic Vocabularies	 29
Service-Oriented Architecture Explained	 29
	 Relationship of Web Services and SOA	 30
	 Identification and Design of Services	 30
	 Service-Oriented Architecture	 31
Summary	 33

Web Services
and Service-
Oriented
Architectures

C
hapter 3

16   Web Services and Service-Oriented Architectures

an analogy to connections used in audio-video (AV) systems (specifically, services
in a service-oriented architecture are to AV components as Web services are to the
connections between AV components). The connection technology of Web services
is explained along with the importance of standardized semantic vocabularies. Then
service-oriented architectures are explained in more detail.

What does this have to do with software systems architecture? Well, it’s all in
the connections. Web services are connections not unlike those we have with AV
systems. Moreover, just like AV systems, we will be able to assemble components
in all sorts of ways because of those connections. In much the same way that that
RCA and HDMI connectors are used to connect components to carry standardized
audio and video signals, Web services connections increasingly use standardized

DVD CD

Receiver

External cable
connection

DVR

RCA
Connectors

HDMI

HDMI

HDMI

Turntable

Figure 3.1  AV components.

More often than not, you can look to the past to find a pattern that will allow you to predict
the future. I had an epiphany of this sort concerning the future of software systems archi-
tecture back in 2002 when I was writing the first edition of this book. At the time, I was
upgrading my AV system. The past for this analogy is my old AV system and the future is
the continued evolution of my AV system.

Since 2002, I have continued to evolve my AV system. The cable box was replaced
with a digital video recorder (DVR) from my cable company. The VCR was removed,
and I decided to resurrect an old turntable to play some of my vinyl albums. I have kept
the same receiver and have resisted getting a flat-screen TV. All these components were
connected using RCA connectors.

When we recently moved into a new home, my wife and I decided it was time to up-
grade to a high-definition TV (HDTV). Of course, I now need to use high-definition mul-
timedia interface (HDMI) connectors, yet I still have my old CD player and turntable. The
DVR needed to be upgraded to HD and we purchased a new receiver that could handle
HDMI as well as the older audio inputs that use RCA connectors. Figure 3.1 shows how
I connected the various components.

Service-Oriented Architecture Overview   17

semantic vocabularies to transport data (I’ll explain more about vocabularies later
in this chapter).

Service-Oriented Architecture Overview

The business trip that C. R. took in the introductory story in Chapter 1 involved using
multiple services, both inside and outside his organization, such as travel, car rental,
online calendar, and customer relationship management (CRM) services. From a
software architectural point-of-view, this is a service-oriented architecture (SOA).
An SOA is built using a collection of services that communicate with each other.
The communication can involve either simple data passing or it could involve two
or more services coordinating some activity. Some means of connecting services to
each other is needed. Those connections are Web services. The Application Program
Interface (APIs) mentioned in Chapters 1–2 use Web services.

Services

A service is software and hardware. One or more services support or automate a
business function. Most often, the intent is that a service can be used in multiple
ways (often referred to as reusability). There are two types of services: atomic and
composite. An atomic service is a well-defined, self-contained function that does not
depend on the context or state of other services. A composite service is an assembly
of atomic or other composite services. A service within a composite service may
depend on the context or state of another service that is also within the same com-
posite service.

The analogy to AV components fits well here. Manufacturers have decided on
the basic functions of a DVD player, a DVR, and other components. Most of the AV
components are analogous to composite services. For example, the turntable in our
example also has a preamp. Audiophiles might prefer a separate preamp. In that case,
both the turntable and the preamp would be analogous to atomic services.

Organizations will eventually evolve standard capabilities of CRM, enterprise
resource planning (ERP), and other services. These will become standard services
and could, in some ways, be seen as commodities. We may see these services come
in various forms, just as AV components do today.1

What does this mean for software development? It means fewer people writing
software and more organizations buying software or renting access to software rather

1 The organizations working on the various standards can be found at http://www.service-architecture.com/
web-services/articles/organizations.html.

http://www.service-architecture.com/web-services/articles/organizations.html
http://www.service-architecture.com/web-services/articles/organizations.html

18   Web Services and Service-Oriented Architectures

than building it. Continuing with the AV analogy: I am old enough to have built my
share of Heathkit electronic kits for audio and other systems. (This was much like
building your own software.) The Heathkit era for electronics is over. I believe a lot
of software development will go the same way.

Connections

Web services provide the means of connecting services. Just like there are multiple
types of connections that can be used in an AV system (RCA, HDMI, etc.), there are
multiple types of Web services for connection services (they will be discussed next
in the “Web Services Explained” section).

Connections such as Web services are part of the inevitable evolution of interconnect-
edness. Consider how we can now exchange email among disparate products. Although
we could not do that at one time, we now take it for granted. This e-mail exchange is
possible because of standards. Connections like Web services (or the equivalent) will
also be taken for granted some day because sets of standards will be developed.

Figure 3.2 illustrates a basic service-oriented architecture. It shows a service con-
sumer at the right sending a service request message to a service provider at the
left. The service provider returns a response message to the service consumer. The
request and subsequent response connections are defined in some way that is under-
standable to both the service consumer and the service provider.

A service provider can also be a service consumer. In the story of C. R.’s business trip,
most of the service providers were also service consumers. For example, the virtual pri-
vate assistant (VPA) service provided travel information, but to do that it needed to con-
sume information from hotel services, car rental services, calendar services, and more.

The Architecture in SOA

There is more to the architecture of an SOA than described here. There are issues
such as the granularity of services, loose coupling, composability, and more that need
to be considered when designing a service-oriented architecture. Concepts related to
these issues are described later in this chapter.

Service response

Service request

Service
consumer

Service
provider

Figure 3.2  SOA basics.

Web Services Explained   19

Web Services Explained

Earlier, Web services were described as a connection technology. To get a full under-
standing of Web services, the history of the first Web services specification is dis-
cussed here.

History of Web Services Specification

Originally the only Web services specification included the Web Services Descrip-
tion Language (WSDL); Universal Description, Discovery, and Integration (UDDI):
and SOAP. Over time, interest in UDDI has faded. Just to give you historical context,
here is an overview of how the original specification was intended to work.

Web Services Description Language

WSDL forms the basis for the original Web services specification. Figure 3.3
illustrates the use of WSDL. At the left is a service provider and at the right is a

Registry

XML service response based on WSDL

3

2

1

4

SOAP Messages

Directory queries

5

XML service request based on WSDL

Service
consumer

Serv
ice

 desc
rip

tio
n usin

g W
SDL

Query responses using W
SDL

Service
provider

Figure 3.3  Web services basics.

20   Web Services and Service-Oriented Architectures

service consumer. The steps involved in providing and consuming a service are
as follows:

1.	� A service provider describes its service using WSDL. This definition is published
to a registry of services. The registry uses UDDI.

2.	� A service consumer issues one or more queries to the registry to locate a service
and determine how to communicate with that service.

3.	� Part of the WSDL provided by the service provider is passed to the service con-
sumer. This tells the service consumer what the requests and responses are for the
service provider.

4.	� The service consumer uses the WSDL to send a request to the service
provider.

5.	 The service provider provides the expected response to the service consumer.

Universal Description, Discovery, and Integration

The UDDI registry was intended to serve as a means of “discovering” Web services
described using WSDL. The idea was that the UDDI registry could be searched in
various ways to obtain contact information and the services available from various
organizations. UDDI registries have not been widely implemented.

The term registry is sometimes used interchangeably with the term service repos-
itory. Generally, repositories contain more information than a strict implementation
of a UDDI registry. Today, instead of active discovery, repositories are used mainly
at design time and to assist with governance.

SOAP

All the messages shown in Figure 3.3 are sent using SOAP. (SOAP at one time stood
for Simple Object Access Protocol; now the letters in the acronym have no particular
meaning.2) SOAP provides the envelope for sending Web services messages. SOAP
generally uses HTTP, but other means of connection may be used. HTTP is the famil-
iar connection we all use for the Internet.

Figure 3.4 provides more detail on the messages sent using Web services. At
the left of the figure is a fragment of the WSDL sent to the registry. It shows a
CustomerInfoRequest that requires the customer’s account to object information.
Also shown is the CustomerInfoResponse that provides a series of items on the cus-
tomer including name, telephone, and address items. At the right of the figure is a

2 Starting with SOAP version 1.2, SOAP is no longer an acronym.

Web Services Explained   21

XML service response based on WSDL

Query responses usingWSDL
Serv

ice description usin
g WSDL

XML service request based on WSDL

<element name="CustomerInfoRequest">
...
<element name="account" type="string"/>

</element>
<element name="CustomerInfoResponse">

<element name="name" type="string"/>
<element name="phone" type="string"/>
<element name="street1" type="string"/>
<element name="street2" type="string"/>
<element name="city" type="string"/>
<element name="state" type="string"/>
<element name="postalcode" type="string"/>
<element name="country" type="string"/>

</element>

...

...

...

<m:GetCustomerInfo >
<account>1069>/account>

</m:GetCustomerInfo>

...

<m:GetCustomerInfoResponse >
<name>Barry & Associates, Inc.</name>
<phone>612-321-8156</phone>
<street1>14597 Summit Shores Dr</street1>
<street2></street2>
<city>Burnsville</city>
<state>MN</state>
<postalcode>55306</postalcode>
<country>United States</country>

</m:GetCustomerInfoResponse>

...

Directory

provider
Service Service

consumer

Directory queries

Figure 3.4  SOAP messaging with a directory.

22   Web Services and Service-Oriented Architectures

fragment of the WSDL sent to the service consumer. This is the same fragment sent
to the directory by the service provider. The service consumer uses this WSDL to
create the service request shown above the arrow connecting the service consumer to
the service provider. Upon receiving the request, the service provider returns a mes-
sage using the format described in the original WSDL. That message appears at the
bottom of Figure 3.4.

Web Services Specifications

There are multiple specifications that can be used for Web services. This section
shows examples for SOAP/WSDL without UDDI, REST, XML, and JSON.

Using SOAP without UDDI

It is possible to use SOAP without UDDI. The connection is, instead, “hard-
coded” if you will. The resulting interaction involves only the bottom part of
Figure 3.4. The interaction between the service provider and the service con-
sumer is shown in Figure 3.5. This is the nature of virtually all SOAP Web
services today.

Using REST

The first alternative to SOAP that was developed is Representational State Transfer
(REST). REST is a style of architecture based on a set of principles that describe how
networked resources are defined and addressed. Roy Fielding first described these
principles in 2000 as part of his doctoral dissertation.3

REST appeals to developers because it has a simpler style that makes it easier to
use than SOAP, is a bit less verbose than SOAP (sends less down the “wire”), and is
used in a way that other resources are used on the Internet.

Figure 3.6 illustrates a fragment of a REST message. It looks a lot like any other
HTTP request that uses parameters. The return message in this example looks much
like the return messages from SOAP.

3 Chapter 5 of Roy Thomas Fielding’s doctoral dissertation “Architectural Styles and the Design of
Network-based Software Architectures” addresses REST. See www.ics.uci.edu/~fielding/pubs/disserta-
tion/rest_arch_style.htm.

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Web Services Explained   23

XML service response

SOAP service request

<m:GetCustomerInfo >
<account>1069>/account>

</m:GetCustomerInfo>

...

<m:GetCustomerInfoResponse >
<name>Barry & Associates, Inc.</name>
<phone>612-321-8156</phone>
<street1>14597 Summit Shores Dr</street1>
<street2></street2>
<city>Burnsville</city>
<state>MN</state>
<postalcode>55306</postalcode>
<country>United States</country>

</m:GetCustomerInfoResponse>

...

Service
provider

Service
consumer

Figure 3.5  SOAP messaging.

XML service response

REST service request

http://www..com/exec?
... account=1069 ...

<name>Barry & Associates, Inc.</name>
<phone>612-321-8156</phone>
<street1>14597 Summit Shores Dr</street1>
<street2></street2>
<city>Burnsville</city>
<state>MN</state>
<postalcode>55306</postalcode>
<country>United States</country>

Service
provider

Service
consumer

... >

< ...

Figure 3.6  REST messaging.

24   Web Services and Service-Oriented Architectures

Using XML

The examples here show both SOAP and REST using XML for response messages.
XML has a tagged message format. This is shown in Figure 3.7. The tag <city> is
highlighted in this figure. The value of city is Burnsville. The tag </city> is the end-
ing tag indicating the end of the value of city. Both the service provider and service
consumer use these tags. In fact, the service provider could send the data shown at
the bottom of Figure 3.7 in any order. The service consumer uses the tags and not the
order of the data to get the data values.

The XML-tagged format provides a level of resilience not available with fixed
record formats commonly used before the advent of XML. For example, if a service
provider adds an additional element not expected by a service consumer, the XML-
tagged format allows processing to continue without any problems occurring.

What if the data sent changes when using XML? Figure 3.8 shows that a ser-
vice provider has added a new element, <extension> for a telephone extension. The
service provider sends a response that includes the new element. As can happen,
the service consumer did not know about the new element. Let’s see what happens
when XML-tagged messages are used.

The service consumer does not expect to receive the telephone extension.
Nevertheless, because of the XML-tagged messages, essentially nothing bad hap-
pens when extra data (the value of the phone extension) is passed back by the service
provider. This is shown at the bottom of Figure 3.9. The tags are used to identify
each of the data items and the service consumer uses the proper values. The extra
telephone extension data is simply ignored. Although it might be nice to have the
extension data, the good news is that no other data is received incorrectly.

XML service response

Service request

Ending tag

Beginning tag

Value

<city>Burnsville</city>

Service
consumer

Service
provider

<name>Barry & Associates, Inc.</name>
<phone>612-321-8156</phone>
<street1>14597 Summit Shores Dr</street1>
<street2></street2>
<city>Burnsville</city>
<state>MN</state>
<postalcode>55306</postalcode>
<country>United States</country>

Figure 3.7  Tagged messages.

Web Services Explained   25

XML service response

Service request

<name>Barry & Associates, Inc.</name>
<phone>612-321-8156</phone>

<street1>14597 Summit Shores Dr</street1>
<street2></street2>
<city>Burnsville</city>
<state>MN</state>
<postalcode>55306</postalcode>
<country>United States</country>

<extension>301</extension>
<name>Barry & Associates, Inc.</name>
<phone>612-321-8156</phone>
<street1>14597 Summit Shores Dr</street1>
<street2></street2>
<city>Burnsville</city>
<state>MN</state>
<postalcode>55306</postalcode>
<country>United States</country>

Expected
response
that does not
include the
extension

The tags are used to
identify data
elements and move
values into
application fields

Response that includes extension.
The value of extension does not get
used in this case

Service
provider

Service
consumer

Figure 3.9  Example of the resilience provided by tagged messages.

XML service response

Service request

<name>Barry & Associates, Inc.</name>
<phone>612-321-8156</phone>

<street1>14597 Summit Shores Dr</street1>
<street2></street2>
<city>Burnsville</city>
<state>MN</state>
<postalcode>55306</postalcode>
<country>United States</country>

<extension>301</extension>

Response that
includes extension

Service
consumer

Service
provider

Figure 3.8  Adding a new element.

26   Web Services and Service-Oriented Architectures

If a fixed record format was used and the same error occurred, there could be
harm. Let’s look at this situation. Figure 3.10 shows a fixed record format that passes
the same data related to customers. The length of this record is 129 characters. Now,
assume the EXTENSION field is added after the PHONE field, but to keep the record
length to 129 characters, the STREET2 field is shortened by three characters.

Figure 3.11 shows this change. Assume the same situation occurs as previously
described. The service consumer does not know about the new element that contains
a value for the telephone extension. Because the fixed record format assumes every-
thing is based on position, whatever appears in a particular position is moved into
a field in the service consumer. Figure 3.11 shows that both the EXTENSION and
STREET1 fields are moved into the first street address in the service consumer.

Figure 3.12 provides another way to view how this happened. In fixed record
messaging, everything is positional. Since the service consumer was unaware of the
record change, it moved “30114597 Summit Shores Dr” into the STREET1 field
shown at the bottom of Figure 3.12.

The effect of a change like this can vary. Obviously, if the service consumer sent
postal mail to this address, it could not be delivered. Less obvious is the situation
when a customer record does not have a phone extension. Then the first three spaces
of the STREET1 field in the service consumer would be spaces. If the service con-
sumer sent postal mail to this address, it could then be delivered as long as the address
was no longer than 22 characters. If the address line exceeded 17 characters then the
last part of the address line would appear on the first part of the second address line.
That may or may not cause a delivery problem as well. Overall, only some addresses

record length = 129 characters record length = 129 characters

01 CUSTOMERINFO.
05 NAME PIC X(30).
05 PHONE PIC X(12).
05 STREET1 PIC X(25).
05 STREET2 PIC X(20).
05 CITY PIC X(20).
05 STATE PIC XX.
05 COUNTRY PIC X(20).

01 CUSTOMERINFO.
05 NAME PIC X(30).
05 PHONE PIC X(12).
05 EXTENSION PIC X(3).
05 STREET1 PIC X(25).
05 STREET2 PIC X(17).
05 CITY PIC X(20).
05 STATE PIC XX.
05 COUNTRY PIC X(20).

STREET2 is
20 characters

EXTENSION is
added

STREET2 is
changed to 17
characters

Figure 3.10  Record content changes without changing the length of the record.

Web Services Explained   27

would fail. Tracking down this type of error is often not easy. Certainly, more cata-
strophic errors can occur when changing the structure of fixed-length records. There
could be situations where the service consumer could even fail because the record
layout coming from the service provider is not the layout expected. This issue with
fixed records is referred to as brittleness.

Record values
are moved by

position

Expected
response that

does not include
the extension

The number
appears incorrectly
because the
extension was
erroneously used

Response that
includes

extension. The
value “301” of

extension is
unexpectedly

used in this case

Barry & Associates, Inc.
612-321-8156

14597 Summit Shores Dr

Burnsville
MN
55306
United States

301
Barry & Associates, Inc.
612-321-8156
30114597 Summit Shores Dr

Burnsville
MN
55306
United States

Service response

Service request

Service
provider

Service
consumer

Figure 3.11  Example of the brittleness of fixed record messages.

PHONE STREET1
EXTENSION

Revised record layout

PHONE STREET1

Previous record layout
... 6 1 2 - 3 2 1 - 8 1 5 6 3 0 1 1 5 9 7 S u m i t h ...4

... 6 1 2 - 3 2 1 - 8 1 5 6 3 0 1 1 5 9 7 S u m i t h ...4

Copying data by record position

First three characters
of STREET2

m S o r e s D r

m S o r e s D r

Figure 3.12  How the wrong data can be copied using fixed records.

28   Web Services and Service-Oriented Architectures

These types of data format changes occur all the time when exchanging data between
systems, either internally or between an internal system and an external system. Using
the XML tagged format makes systems more resilient in the face of such changes.

The downside of using XML is that the messages are much longer. XML mes-
sages are physically longer than fixed record messages because of the included tag
information. So, there is a potential performance hit. With XML, you are trading
some resilience in your systems for some reduction in performance. Nevertheless,
as transmission speeds increase, this reduction in performance may not be noticed.

JSON, an XML Alternative

It is possible to use Web services without XML. JSON (JavaScript Object Nota-
tion) is one option. It uses name/value pairs instead of the tags used by XML. For
example, the name “city” is paired with the value “Burnsville.” This is illustrated on
the right side of Figure 3.13. The name/value pairs in JSON provide the same type
of resilience as the XML-tagged format for data exchanges described in the previous
section. The name/value pairs do not have to be in any particular order to work.

Figure 3.13 also shows that XML and JSON can use the same vocabulary for the
names of the data elements. This opportunity for standardizing on the names and the
meaning of the names will be discussed later in this chapter.

When to Use SOAP, REST, JSON, or Other Options

By now, you might be wondering which option is “best” for Web services. If you
are using external services, the service providers have chosen the Web service(s)
they support. You will need to use whatever they have chosen. In all likelihood, your
organization will use “all of the above”: SOAP, REST, JSON, and whatever new Web
service that is developed. Referring back to the AV analogy used earlier, the type of
connections you can use between any two components is limited by the connections
they can accept. The choice of Web services is no different.

<name>Barry & Associates, Inc.</name>
<phone>612-321-8156</phone>
<street1>14597 Summit Shores Dr</street1>
<street2></street2>
<city>Burnsville</city>
<state>MN</state>
<postalcode>55306</postalcode>
<country>United States</country>

... >

< ...

“name” : “Barry & Associates, Inc.”,
“phone” : “612-321-8156”,
“street1” : “14597 Summit Shores Dr”,
“street2” : “”,
“city” : “Burnsville”,
“state” : “MN”,
“postalcode” : “55306”,
“country” : “United States”

{

}

XML JSON

Figure 3.13  Comparison of XML and JSON.

Service-Oriented Architecture Explained   29

If you are developing your own service, you can choose the Web service that is
best for you. The one that is best for you might be the Web service used by most in
your industry or the Web service used by most services on the Internet that you are
most likely to use. Be prepared, however, to use “all of the above” as mentioned
before. However, there may be technical reasons that you should choose one Web
service over another. The technical advantages and disadvantages of each type of
Web service available are beyond the scope of this book.

The Opportunity and Importance of Standardized Semantic
Vocabularies

Within an organization, it is not uncommon to find, for example, that the “account
number” in one unit has the same meaning as the “customer ID” in another unit. This
is often not documented and, if widespread enough, can lead to added development
costs or even processing problems.

If you move to exchanging data among many organizations, the data element name
and meanings can vary even more. So, the advent of Web services created an oppor-
tunity for industry groups and other organizations to establish standardized semantic
vocabularies. This is because the most common means of exchanging data using Web
services involves sending the name of a data element along with the value of that data
element. This is the example shown earlier, where there is a data element named “city”
with a value of “Burnsville.” The data exchange includes both the name “city” and its
value “Burnsville.” XML does this using tags; JSON does it using name/value pairs.

The idea of standardizing on a semantic vocabulary also creates an opportunity
for any organization to harmonize data elements among its units and with the larger
world outside the organization. If, for example, the meaning of “account number”
and many other names is universally understood in a given industry, it can easily
minimize development costs and processing errors.

Harmonizing with industry semantic vocabularies is one way to position your
organization for whatever might be coming in the future beyond Web services,
service-oriented architecture, or cloud computing.

These semantic vocabularies are often referred to as XML vocabularies, since
XML was used by the first Web services specification. A sampling of these vocabu-
laries can be found on page 179.

Service-Oriented Architecture Explained

SOA is way to design, implement, and assemble services to support or automate busi-
ness functions. SOA is not a new concept. The first SOA for many people was in the
1990s with the use of Microsoft’s DCOM or Object Request Brokers (ORBs) based

30   Web Services and Service-Oriented Architectures

on the CORBA specification.4 The basic idea goes back even further to the concept
of information hiding that creates an interface layer above underlying systems.

Relationship of Web Services and SOA

Figure 3.14 uses a Venn diagram to illustrate the relationship between SOA and Web
services. The overlapping area in the center represents SOA using Web services for
connections. The nonoverlapping area of Web services represents that Web services
can be used for connections, but connections alone do not make for an SOA. The
non-overlapping area of SOA indicates that an SOA can use Web services as well
as connections other than Web services (the original specifications of CORBA and
DCOM are examples).

Identification and Design of Services

Key to SOA is the identification and design of services. The idea is that services
should be designed in such a way that they become components that can be assem-
bled in multiple ways to support or automate business functions. It is not necessarily
easy to properly identify and design services. When done well, the services allow an
organization to quickly assemble services—or modify the assembly of services—to

4 See page 57 for more on CORBA and DCOM.

SOA
SOA using

Web services
Web

services

Figure 3.14  Relationship of Web services and SOA.

Service-Oriented Architecture Explained   31

add or modify the support or automation of business functions. Here are basic con-
cepts related to services:

■	 Atomic service: An atomic service is a well-defined, self-contained function that
does not depend on the context or state of other services. Generally, an atomic ser-
vice would be seen as fine grained or having a finer granularity.
■	 Composite service: A composite service is an assembly of atomic or other
composite services. The ability to assemble services is referred to as com-
posability. Composite services are also referred to as compound services.
Generally, a composite service would be seen as coarse grained or having a larger
granularity.
■	 Loosely coupled: This is a design concept where the internal workings of
one service are not “known” to another service. All that needs to be known is the
external behavior of the service. This way, the underlying programming of a ser-
vice can be modified and, as long as external behavior has not changed, anything
that uses that service continues to function as expected. This is similar to the
concept of information hiding that has been used in computer science for a long
time.

The design challenge is to find a balance between fine-grained and coarse-grained
services to minimize communication overhead yet keep the services loosely coupled.
Chapter 10 provides an approach for designing atomic and composite services.

Service-Oriented Architecture

So, what exactly does a service-oriented architecture look like? Let’s start with a
service provider. Any given service provider could provide multiple services. Mul-
tiple services are represented in Figure 3.15 by the small circles. Services are code—
running on an underlying computer system—that provide computing as well as
access and updates to stored data.

... Service
provider

Services

Figure 3.15  Services in a service provider.

32   Web Services and Service-Oriented Architectures

Services are assembled to support or automate business functions. Figure 3.16
illustrates the assembly of services. This represents an SOA. Web services are used
to connect the services in an SOA.

The services in an SOA can come from any service provider (which, as men-
tioned earlier, can also be a service consumer). So, in a given SOA, the services
might be from internal systems along with any number of external systems accessible
anywhere on the Internet. This is illustrated by Figure 3.17.

It is easy to imagine that you can reassemble the same services with other ser-
vices to achieve a different functionality. This ability to change the assembly of ser-
vices is one way that an SOA can quickly adapt to changing business needs.

Services

Web services

Figure 3.16  Assembly of services into an SOA.

Web services

... Service
provider/consumer

...

... Service
provider/consumer

Services

Internal systemExternal system

Cloud-based system

Service
provider/consumer

Figure 3.17  Example sources of services in an SOA.

Service-Oriented Architecture Explained   33

It is also easy to imagine the number of available services quickly expanding
to some unmanageable number. That is one reason why governance is important.
Governance applies a structure and control over an organization’s use of services.
Chapter 12 will discuss governance in more detail.

Summary

This chapter outlined Web services and service-oriented architectures. It showed
the importance of a robust messaging format in the use of Web services. The chap-
ter also highlighted the importance of the ongoing standardization of the various
semantic vocabularies. The chapter ended with an explanation of service-oriented
architectures.

Chapter 4 will weave the concepts of service-oriented architecture into a
discussion of cloud computing.

This page is intentionally left blank

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00004-X

35

Chapter 3 discussed services and how Web services are used to connect services.
When you place those services in a data center and connect to them over the Internet,
you have the basis of cloud computing. The advent of relatively inexpensive hard-
ware (servers and storage) along with the growing availability of high-speed Internet
connections made it possible to develop large data centers that can be located most
anywhere in the world. There is more, however, to cloud computing, and this chapter
provides basic information about it.

This chapter also describes ways that organizations of any size can use a service-
oriented architecture (SOA) that takes advantage of cloud computing and why most

Contents
Blurring of Internal and External Services	 37
Organizations of Any Size Can Use a Service-Oriented Architecture
	 with Cloud Computing	 38
The Cloud	 39
Types of Clouds	 41
Categories of Cloud Providers	 42
Summary	 44

Cloud
Computing

C
hapter 4

36   Cloud Computing

organizations likely will, as a result, experience a blurring of internal and external
services. The chapter finishes with descriptions of the types of clouds and categories
of cloud providers.

The AV components (receiver, DVD, etc.) are analogous to services internal to an
organization. An organization may, for example, use similar email and calendaring

Smartphone

DVD CD

Receiver

External cable
connection

DVR

RCA
Connectors

HDMI

HDMI

HDMI

Turntable

Figure 4.1  HDTV and smartphone connected to the cloud.

Continuing with the audio-video (AV) system analogy from the previous chapter, when
I started using a digital camera, I loaded the digital photos onto a PC. At some point I
decided to upload photos to a website that manages digital photo albums so that it was
easier to share photos. More recently, I’ve had my older physical photos digitized and I
uploaded them to the photo album service as well. My high-definition television (HDTV)
is connected to the Internet. This means that I can use my HDTV to view photos managed
by the photo album service in the cloud.

I actually have more in the cloud. For instance, I have my calendar, some of my
music, and multiple email accounts in the cloud. In the cloud, I only pay for what I use.
Moreover, some things are free up to a point (a certain storage amount or a certain level
of usage). It is inexpensive to have my digital content in the cloud. It also means I can ac-
cess that content using my smartphone or most any other device connected to the Internet.
Figure 4.1 illustrates the use of the cloud with my AV system.

Blurring of Internal and External Services   37

services available in the cloud. An organization might also use the cloud for storage,
which would be analogous to storing photos or music.

Blurring of Internal and External Services

In an SOA that takes advantage of cloud computing, the distinction between
internal and external services will become less apparent. In our story, C. R.’s
organization changed from an aging internal customer relationship management
(CRM) product to an external CRM service because the external service was more
economical and had more functionality. The change may or may not be dramatic,
depending on how internal systems were connected to the aging internal CRM
product.

Organizations might find that moving more to the cloud greatly simplifies
their internal systems—not unlike the AV system analogy. In all likelihood, it
is possible to find multiple service providers in the cloud for the same type of
service. This creates a dynamic environment, where cloud computing provid-
ers compete on features or innovations that are independent of the connections.
Competition could be on pricing, content, or other features that allow for highly
customized interactions.

Organizations will be affected by additional services becoming available in the
cloud. It can be difficult for an internal development group in some organizations to
compete with a cloud computing provider that can recoup development costs by hav-
ing many more customers than any internal development organization could imagine.
The external provider can achieve better product at a lower cost because of specializa-
tion. Internal development organizations may therefore shift to doing less develop-
ment. The emphasis internally may shift to making all the connections work properly
and integrating new services that might give an organization a competitive edge.

Earlier, I described how I put my digital photos in the cloud and view the photos on my
HDTV. Figure 4.1 shows that I kept the turntable and CD player for music that I have
owned for a long time. Given my background in software development, I could have digi-
tized my existing music, loaded it on a PC attached to my AV system, and programmed
software to manage all that content on my PC. That, however, would be a lot of work and
would take a lot of time. I would also need to make sure my infrastructure provides the
appropriate backup capability, including off-site backup.

It turned out, however, that I rarely played a CD and never played my old vinyl records.
So, I decided it was time to move on. I sold my records and disconnected the turntable and
CD player. My HDTV allows for two HDMI inputs. That meant I could also disconnect my
receiver. And, I am quite satisfied with using only the online music service. Figure 4.2 shows
how much simpler my AV system is now that I am using the cloud for my music.

38   Cloud Computing

Organizations of Any Size Can Use a Service-Oriented
Architecture with Cloud Computing

The use of an SOA with cloud computing is not limited to large organizations. In
fact, this architecture represents an opportunity for small- and medium-size organiza-
tions. Many services are provided on some type of fee-for-use basis, which will make
them economical for organizations of most any size. Other services are provided at

DVD

External cable
connection

DVR
HDMI

HDMI

Smartphone

Figure 4.2  Simpler AV system.

It may be obvious what will eventually happen with my AV system. I am using the DVD
player less and less to watch movies since most movies I watch now are streamed. My
main use of the DVD player is for playing music from the music service in the cloud (the
DVD player has an Internet connection). The reason I do this is because to play the music
on the HDTV requires the screen to be on, which I don’t like. So, once I have an HDTV
that allows the screen to be turned off while the sound is left on, I can get rid of the DVD
player. Also, my cable provider might provide an alternative to the digital video recorder
(DVR) that stores recorded video using a service in the cloud. In fact, the storage capacity
of the DVR is limited since I have started recording video in HD. So, I could use some
type of elastic storage for my recorded video. With these changes, all I need is a cable
box. If a future HDTV allows for cable features such as on demand—or has a place to
insert a proprietary cable card—then all I will have in my AV systems is the HDTV. That
is simplification.

The Cloud   39

no cost. In the story of C. R.’s business trip, the travel service might charge for each
use, whereas the external CRM service might charge a monthly fee for a certain
number of users and the car rental and hotel services might be free.

The external expense report service used by C. R. in his trip is an example of
a service that can be used by organizations of any size. A one-person organization
could either use only the expense reporting portion of the service or download the
expense report data into accounting software on a personal computer. A larger orga-
nization that uses a payroll service could further automate expense report processing
by having the expense report service send reimbursement information to the payroll
service.

The Cloud

The cloud provides software and hardware resources via the Internet. The connec-
tions into the cloud are often referred to as application programming interfaces
(APIs). These APIs use Web services, such as SOAP, REST, and JSON described in
Chapter 3. (The cloud component of the virtuaal private assistant (VPA) in the story
of C. R. makes extensive use of APIs.) The content sent over these APIs is usually
XML or some form of name/value pairs.

Figure 4.3 uses a Venn diagram to illustrate the relationship between Web ser-
vices, SOA, and cloud computing. Cloud computing is shown within Web services
to indicate that cloud computing uses Web services. You can, however, use Web ser-
vices without cloud computing. As discussed in Chapter 3 with Figure 3.14, you can
have an SOA without Web services as well as with Web services. Similarly, you can

SOA
SOA using

cloud
computing

SOA
using

services
Web

Web
services

cloud
computing

Figure 4.3  Relationship of Web services, SOA, and cloud computing.

40   Cloud Computing

use cloud computing without having an SOA. This book emphasizes SOA with cloud
computing and using Web services for connections—this is the shaded area of the
Venn diagram (SOA with cloud computing).

In Chapter 3, Figure 3.2 illustrated the basics of a service-oriented architecture.
That same architecture can be used with cloud computing. Figure 4.4 illustrates a
similar SOA, this time with various combinations of cloud computing. A service
provider can be in any type of cloud or be an internal service. Similarly, a service
consumer can be a service within any type cloud or be an internal service.

The services provided in the cloud come from multiple organizations.
These organizations are referred to as cloud providers. As a result, the cloud
has multiple services provided by multiple cloud providers. A cloud provider

Service response

Service request

Service response

Service request

Service response

Service request

Service
provider

Any Type of Cloud

Service response

Service request

Any Type of Cloud

Any Type of Cloud

Any Type of Cloud

Internal Service

Internal ServiceInternal Service

Internal Service

Service
provider

Service
provider

Service
provider

Service
consumer

Service
consumer

Service
consumer

Service
consumer

Figure 4.4  SOA basics with various combinations of cloud computing.

Types of Clouds   41

usually strives to ensure high-availability of its infrastructure. Some cloud pro-
viders have the building blocks to create services: software tools, database
management systems, hardware, backup-services, and so on. Other cloud pro-
viders have suites of services such as a counting, CRM, document manage-
ment, and many more. Furthermore, some cloud providers that have suites of
services, also provide tools to customize the suites to meet particular business
needs.

Cloud providers often price their infrastructure and services on a demand basis.
For example, you could pay by transaction or by the amount of storage on-you are
using. Some cloud providers have the capability to scale up dynamically for such
things as peak transaction loads or unexpected higher storage requirements. The
cloud usually allows organizations to avoid significant upfront costs since you only
pay for what you use as you use it.

Whether you intend to build your own services in the cloud or use a cloud pro-
vider’s services, you need to consider issues of security, software tools, and software
infrastructure, along with the hardware infrastructure. Security is often a major con-
cern if using a public cloud because it is a shared environment.

Types of Clouds

n	 Public cloud: The email, calendar, photo, and music services used in the AV
system analogy are all in the public cloud. Nearly all of the services used by the
VPA in the story about C. R.’s trip are also in the public cloud. The VPA itself
is in the public cloud as well. Typically, a public cloud provider allows multiple
organizations to provide multiple types of services (often referred to as multi-
tenancy). The location for the underlying data center could be most anywhere in
the world (often referred to as location independence). The underlying hardware
is usually chosen by the cloud provider and not the users of the service (here you
will likely find virtualization and device independence). The public cloud can
also be described as an external cloud when viewed from within a given organi-
zation.

n	 Community cloud: A community cloud is more restricted than a public cloud.
The restriction is to a “community.” The restriction could be based on an industry
segment, by general interest, or by whatever way a group might be defined. These
clouds could be multi-tenanted. The underlying data center might be provided by
a third party or by one member of the community.

n	 Private cloud: A private cloud is restricted to one organization. Most often that
organization is the single tenant—that is, unless the organization might want to
host a private, multi-tenanted cloud for various internal segments or units of the

42   Cloud Computing

organization. The data center for private clouds is managed by the organization.
This can also be called an internal cloud.

n	 Virtual private cloud: C. R.’s organization wanted to get out of the business of
maintaining an enterprise data warehouse in its data center and decided to use
a virtual private cloud. A virtual private cloud involves some type of partition-
ing to ensure that the private cloud remains private. Typically, a virtual private
cloud provider allows the definition of a network similar to a traditional network.
Within such a network, it is possible to have systems such as database manage-
ments systems, business information (BI)/analytics systems, application servers,
and so on.

n	 Hybrid cloud: This is the combination of any of the above. In reality, this is a
somewhat ambiguous term since an organization might have a private cloud and
use the public cloud. That could be seen as a hybrid cloud or it could be simply
using two types of clouds.

Categories of Cloud Providers

n	 Infrastructure as a Service (IaaS): This contains the physical and virtual
resources used to build the cloud. These cloud providers provision and man-
age the physical processing, storage, networking, and hosting environment. This
is the data center or, in some cases, the data centers. Pricing is often based on
resources used.

n	 Platform as a Service (PaaS): This provides a complete computing platform.
These cloud providers provision and manage cloud infrastructure as well as pro-
vide development, deployment, and administration tools. Here you will find the
features that make a platform: operating systems, web servers, programming
language, database management systems, and so on. This is where the provider
might provide elasticity: the ability to scale up or scale down as needed. You
will also find some level of reliability provided by the software platform. For
example, some type of fault tolerance might be provided for the database man-
agement system. In the story of C. R., when his organization wanted to move to
a virtual private cloud, it most likely looked for a PaaS cloud provider that pro-
vides the software and tools to support existing systems. Pricing can be on many
dimensions. For example, pricing could take into account the type of database
management system, the level of activity, the amount of storage, and computational
time/resources used.

n	 Software as a Service (SaaS): This provides complete software systems. SaaS
is a common way to provide applications such as email, calendars, CRM, social
networks, content management, documentation management, and other office

Categories of Cloud Providers   43

productivity applications. SaaS is also known as “on-demand software.” (The
AV example earlier in the chapter uses multiple SaaS cloud providers—as
does the story about C. R.) Pricing is often on per user basis, either monthly or
yearly.

Figure 4.5 illustrates the relationship of IaaS, PaaS, and SaaS in the cloud com-
puting stack.

SaaS cloud providers are what most people mean when they refer to “the
cloud.” They provide the services and related data that can be used directly or
combined in some way with other SaaS providers or with your own unique data
and services.

Data Center
Physical Plant/Building

Networking
Firewalls/Security

Servers and Storage

Virtualization

Operating Systems

Development Tools
and

Database Management

Hosted Applications
Suites of Services

IaaS

PaaS

SaaS

Figure 4.5  Cloud computing stack: IaaS, PaaS, and SaaS.

44   Cloud Computing

Summary

The cloud computing model affords the opportunity to deliver applications via the
Internet, preclude the costs of owning and operating data centers, and leverage the
work of other software developers. This chapter described the categories of cloud
providers and, the functions of cloud service management. It also described the rela-
tionship among Web services, SOAs, and cloud computing.

The use of any technology, of course, must exist in the context of our organiza-
tions. Organizations have many forces that affect the adoption of new technology.
The next part of the book will delve into the forces affecting the adoption Web
services, service-oriented architectures, and cloud computing.

PA
RT II

Technical
Forces Driving
the Adoption of
Web Services,
Service-Oriented
Architectures, and
Cloud Computing
Change in any organization can be challenging. This part looks at the forces
that help or hinder the technical aspects of change using a technique called
force field analysis. Part III will address non-technical, human aspects of change
using the same technique.

This part analyzes various integration techniques related to Web services,
service-oriented architecture, and cloud computing—with separate chap-
ters on each technology. Each chapter uses multiple force field analyses
to build to a concluding analysis on technical forces driving the adoption of the
Web services, service-oriented architecture, and cloud computing. Chapter 6,
on forces related to service-oriented architectures, builds on the analysis
in Chapter 5 for Web services. Similarly Chapter 7, on the technical forces
driving the adoption of cloud computing, builds on the analysis in Chapter 6
for service-oriented architectures.

This page is intentionally left blank

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00005-1

47

There are two aspects to Web services. One aspect is the vocabulary of the message
being sent. The other is the communications protocol that is used to send the mes-
sage. This chapter will analyze the forces driving both aspects by looking at two
representational examples of what was used before the advent of Web services. The
examples in this part show that advances in technology and standards have dimin-
ished the number of restraining forces, making change more likely to occur.

This chapter introduces force field analysis and applies it to the adoption of Web
services. Force field analysis will also be used in the next two chapters on service-
oriented architecture and cloud computing.

Contents
Force Field Analysis Overview	 48
Adopting Standard Data Element Definitions	 50
Adopting a Standard Communications Protocol	 51
Adopting Web Services	 52
Summary� 54

Technical
Forces Driving
the Adoption of
Web Services

C
hapter 5

48   Technical Forces Driving the Adoption of Web Services

Force Field Analysis Overview

Force field analysis is a tool that provides a perspective on the forces at work when
trying to make changes in organizations. This approach to analyzing change was
developed by Kurt Lewin.1 Figure 5.1 illustrates the concepts of this technique. For
any particular activity, there is a goal or vision, which is shown by the large arrow at
the top of the figure pointing to the right. There are driving and restraining forces that
will impact whether this goal or vision can be achieved.

n	 Driving forces, which help achieve the goal or vision, are shown as arrows point-
ing to the right in the same direction as the large arrow at the top.

n	 Restraining forces, which hinder goal achievement, are the arrows pointing to the
left in the opposite direction from the large arrow at the top.

At some point, driving and restraining forces are in equilibrium. This is illustrated
in Figure 5.1 by the wide vertical line labeled “Status Quo.” Driving forces move an
organization from the status quo in the direction of the organization’s goal or vision.
Restraining forces hold back this change from the status quo. These forces can be
external or internal to an organization, or external or internal to the individuals in
the organization. The relative strength of the driving or restraining forces determines
whether change occurs.

1 Kurt Lewin, Field Theory in Social Science (New York: Harper and Row, 1951).

S
T
A
T
U
S

Q
U
O

Driving forces Restraining forces

Goal or vision

Figure 5.1  Force field analysis.

Force Field Analysis Overview   49

Assume, for example, that you want to change a part of a system in an organi-
zation. Two organizational driving forces could be a reduction in operating costs
and the opportunity to electronically exchange purchase orders and invoices with
a particular customer or supplier. An organizational restraining force could be the
development cost for making the change. Figure 5.2 illustrates this concept.

Of course, there could be many other forces at work than those shown in Figure 5.2.
The nature of the driving and restraining forces could also vary by organization even if
the organizations were attempting to carry out exactly the same tasks. In fact, they can
vary among departments in the same organization.

Essentially, the purpose of this model is to make all the driving and restraining
forces visible so that decisions concerning change can be made with the best avail-
able information. There are various ways to use this model. If you want to make
change more likely, you need to either strengthen the driving forces or weaken
the restraining forces. Weakening the restraining forces is sometimes the best
approach. Strengthening the driving forces can make the restraining forces stronger.
In Figure 5.2, developing the electronic exchange capabilities of this change is
restrained by the costs of development, effectively resisting change from the status
quo. So, perhaps it is possible to adopt an industry standard for electronic exchanges,
thus weakening this restraining force. In the figures that follow, weakened restrain-
ing forces are shown as gray arrows to indicate that the restraining force is fading
away. Figure 5.2, for example, shows the costs of development as weakened and
less of a concern.

Driving forces Restraining forces

Reduction in operating costs

Electronic exchange

Making a system change

Costs of development

S
T
A
T
U
S

Q
U
O

Figure 5.2  Force field analysis for making a system change.

50   Technical Forces Driving the Adoption of Web Services

Adopting Standard Data Element Definitions

In the early 1980s, many large organizations were running custom software and there
was very little use of packaged software. At the time, it was believed that there would
be opportunities to internally exchange data more easily, reduce development time,
and possibly reduce maintenance costs if all the custom software were to use the
same data element definitions. These opportunities are shown as driving forces in
Figure 5.3. Restraining forces related to cost offset these driving forces. Figure 5.3
shows the restraining forces of costs to developing the standard definitions and the
costs related to changing existing systems.

There are additional restraining forces in this figure. In some cases, there were
valid reasons that two different systems used different definitions for the same data
element. At the time, there had been little progress in developing a standard set of
data element definitions that could be shared by various organizations. Therefore,
the cost of developing a standard set for a single organization was quite high because
it involved starting with a clean sheet of paper. Even if efforts to use standard data
element definitions had been successful, the first merger or acquisition would likely
cause a problem. The systems used by every other organization would likely have

Driving forces Restraining forces

Reduced maintenance costs

Reduced development time

Easier exchange of data

Mergers and acquisitions

Lack of industry-standard definitions

Products use different data definitions

Adopting standard data element definitions

Some definitions need to be different

Costs to develop standard definitions

Existing data definitions are different

Costs to change existing systems

S
T
A
T
U
S

Q
U
O

Figure 5.3  Force field analysis for adopting standard data element definitions.

Adopting a Standard Communications Protocol   51

different data element definitions. Finally, as the use of packaged software increased,
the definitions used in those products would most likely be incompatible. With
enough mergers or acquisitions and use of packaged software, you would be back at
the starting point with incompatible data element definitions.

Times have changed since the early 1980s and so have attitudes toward standard
data element definitions. Some industries can see advantages in having standard defi-
nitions so that data can easily be interchanged among organizations. Another advan-
tage to standard data element definitions is that they lessen the integration efforts
involved in mergers and acquisitions. The term data element definition has more or
less been replaced by semantic vocabulary. Chapter 3 discussed the opportunity and
importance of standardized semantic vocabularies. A sampling of such vocabularies
by industry can be found on page 179.

Adopting a Standard Communications Protocol

There has always been interest in connecting two or more software systems together.
This is achieved using a communications protocol. Prior to the introduction of TCP/
IP in the 1980s, adopting a communications protocol was a major undertaking.

Driving forces Restraining forces

Easier exchange of data

Interoperable networked applications

Adopting a standard communications protocol

Lack of training and tools for protocols

Products use different protocols

Semantic translation

Different semantics in data sources

Lack of industry-standard protocol

Brittleness of fixed record exchanges

Mergers and acquisitions

Reduced development time

Reduced maintenance costs

S
T
A
T
U
S

Q
U
O

Figure 5.4  Force field analysis for adopting a standard communications protocol.

52   Technical Forces Driving the Adoption of Web Services

The intent was that adopting an organizational standard communications protocol
should reduce development time and maintenance costs. These are shown as driving
forces in Figure 5.4. Before TCP/IP, there was no standard protocol and different
protocols could be found among software products offered by various vendors. There
was limited training and tools for the protocols since they were often only available
from the software vendor or a few third parties. There were most likely differing
semantics in data sources requiring semantic translation. The message transmitted
was more often than not in a fixed-record format. See page 27 for possible issues
related fixed record exchanges. Finally, mergers and acquisitions could easily bring
in different communications protocols since there was no standard. Figure 5.4 shows
these restraining forces.

Adopting Web Services

Compared to standard data element definitions developed separately for each organi-
zation and differing “standard” communications protocols, the use of Web services
makes creating interoperable systems much easier. Web services use both XML or
name/value pairs for message formats and HTTP with TCP/IP on the Internet for
a communications protocol. This greatly reduces restraining forces that had existed
prior to Web services. Figure 5.5 shows the driving and restraining forces for adopting
Web services.

Figure 5.5 retains all of the driving forces from the prior techniques: easier
exchange of data, interoperable networked applications, reduced development time,
and reduced maintenance cost. There are also additional driving forces. Many indus-
tries are working on industry-wide semantic vocabularies for tagged languages such
as XML or other languages that use name/value pairs. This relates to the reduced
brittleness driving force. The widespread adoption of Web services has pushed many
vendors to incorporate the use of Web services into their products and services. The
growing use of Web services also results in a significant growth of external services
that can be used by organizations of any size. Similarly, there is an abundance of
training and tools on Web services.

The restraining forces affecting the adoption of Web service are fewer and weaker
than the preceding techniques. Among the remaining restraining forces are lingering
different semantics in data sources and semantic translation. There are, however,
efforts in various standards organizations to simplify the semantics and standardize
the semantic translation.2 Those standards are still evolving, which is why they are

2 See http://www.service-architecture.com/web-services/articles/organizations.html.

http://www.service-architecture.com/web-services/articles/organizations.html

Adopting Web Services   53

seen as a restraining force. Nevertheless, as time goes on these restraining forces will
weaken. These weakening forces are shown in gray in Figure 5.5.

Finally, mergers and acquisitions are shown in Figure 5.5 as a weakening restrain-
ing force for the adoption of Web services. The broad adoption of Web services by
product vendors over time increases the likelihood that an acquired organization will
use Web services. Mergers and acquisitions also appear as a driving force. This is for
those industries where mergers and acquisitions are commonplace. Easing technical
aspects of mergers and acquisitions could, for example, be a driving force for cur-
rent efforts to develop industry-wide vocabularies for Web services. The reason for
the dashed line in Figure 5.5 is because this driving force is not likely to apply to all
industries.

Driving forces Restraining forces

Standards are evolving, not fixed

Adopting Web services

Different semantics in data sources

Semantic translation

Mergers and acquisitions

Easier exchange of data

Availability of external services

Support of Web services in products

Emerging industry-wide standards

Reduced maintenance costs

Reduced development time

Availability of training and tools

Mergers and acquisitions

Interoperable networked applications

Reduced brittleness using tags
or name/value pairs

S
T
A
T
U
S

Q
U
O

Figure 5.5  Force field analysis for adopting Web services.

54   Technical Forces Driving the Adoption of Web Services

Summary

This chapter analyzed the forces driving the adoption of standard vocabularies and
communication protocols. It started out by looking at two representational examples
of what was used before the advent of Web services. The examples showed that
advances in standardized semantic vocabularies and Web services communication
protocols have diminished the number of restraining forces, making change more
likely to occur.

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00006-3

55

This chapter applies force field analysis to service-oriented architectures (SOAs).
It starts with analyses of integration techniques that preceded SOAs. It then applies
force field analysis to the enterprise service bus (ESB), which is often used in
SOAs. Toward the end of the chapter, the analyses are combined into a force field
analysis of SOAs using Web services. This analysis shows many driving forces for

Contents
Adopting Standard, Enterprise-Wide Software	 56
Adopting an Object Request Broker	 57
Adopting an Enterprise Data Warehouse	 59
Adopting an Enterprise Service Bus	 62
	 Message Routers	 62
	 Adapters	 63
Adopting a Service-Oriented Architecture	 67
Summary	 70

Technical
Forces Driving
the Adoption
of SOA

C
hapter 6

56   Technical Forces Driving the Adoption of SOA

adopting an SOA. It also shows that, over time, many technical restraining forces
will diminish and the remaining restraining forces will be typical business and
design issues.

Adopting Standard, Enterprise-Wide Software

One early integration technique was for an organization to adopt enterprise-wide
software. This worked sometimes. When it did, however, usually it was success-
ful only for a short period. The obvious appeal of adopting standard software is
that everyone uses the same software. This means that the entire organization uses
the same data definitions, semantics, and formats for exchanging data. Often, this
worked best for organizations that were small and were putting a new set of systems
in place. Nevertheless, standardizing on systems software often runs into prob-
lems, too. There are long-term restraining forces, such as mergers and acquisi-
tions, that can come into play. Even a new, small organization can acquire another
organization that uses an entirely different system, and integration problems begin.
Figure 6.1 provides the force field analysis for adopting standard, enterprise-wide
software.

This approach has a mergers and acquisitions restraining force for a similar
reason as seen in trying to establish standard data element definitions in Chapter 5.

Driving forces Restraining forces

Reduced maintenance costs

Reduced development time

Easier access to enterprise-wide data

Departments have different needs

Mergers and acquisitions

Conversion to new software

Dependence on software products

Adopting standard, enterprise-wide software

Mergers and acquisitions

Product doesn’t provide everything
that is needed

S
T
A
T
U
S

Q
U
O

Figure 6.1  Force field analysis for adopting standard, enterprise-wide software.

Adopting an Object Request Broker   57

The other organization can easily use different software. It is also common in larger
organizations that some departments have different software needs. It is rare that
you can find “one size fits all” software. Another downside is that adopting a
complete set of software systems from a single vendor makes your organization
dependent on that single vendor. As soon as you move away from that vendor’s
products, you might be back into common integration issues. For organizations that
have existing systems, adopting standard software can mean a mass conversion to
the new software. This is often problematic and should be seen as a restraining force.
Finally, it is often the case that the product doesn’t provide all the functionality that
is needed.

Note that none of the restraining forces in this figure are shown in gray. This
means that they will not diminish over time and will remain restraining forces for the
foreseeable future.

Of course, every example has a counterexample. There are some industries
where mergers and acquisitions are commonplace. You will see organizations
in those industries adopting common, industry-wide software packages so that
it will be easier for one organization to be acquired or merged with another
organization. So, mergers and acquisitions can also be a driving force. This is
represented in Figure 6.1 with a dashed line. Although I have not seen any empiri-
cal data on it, my experience is that this is the exception rather than the rule.
That is the reason for the dashed line, because it is likely to apply to only some
industries.

Adopting an Object Request Broker

The 1990s saw the introduction of object request brokers (ORBs). The two best
known ORBs were the Object Management Group’s Common Object Request
Broker Architecture (CORBA) specification and Microsoft’s Distributed Common
Object Model (DCOM). (CORBA is still around in various forms. DCOM is now a
part of Microsoft’s .NET.)

ORBs are middleware that are one way to exchange data among two or more
systems. These systems could be from multiple vendors. In fact, an ORB could be
one way to integrate systems from two organizations when a merger or acquisition
occurred. An ORB hides the complexity of the communication between two or more
systems. They provide a means for applications to communicate with each other.
Figure 6.2 shows that, historically, providing interoperable, networked applications
was a driving force for adopting an ORB.

The original specifications for CORBA and DCOM, however, dealt with how
to get data from one place to another. There were no specific requirements for the

58   Technical Forces Driving the Adoption of SOA

format of the data transmitted in the messages. The restraining forces related to data
for an ORB are:

n	 Different semantics in data sources
n	 Semantic translation
n	 Lack of industry-standard definitions

Advances in industry standards such as XML mitigated all these restraining forces,
which is why they are shown as gray arrows in Figure 6.2. In fact, using XML makes
for a more flexible system because of the tagged record structure of XML.1 This also
mitigated the restraining force related to the brittleness of fixed record formats.

1 For an explanation of the tagged record structure of XML and the brittleness of fixed record formats,
see page 27.

Driving forces Restraining forces

Reduced maintenance costs

Reduced development time

Interoperable networked applications Different semantics in data sources

Lack of industry-standard definitions

Semantic translation

Adopting an object request broker (ORB)

Perceived ORB complexity

Lack of ORB product support

Brittleness of fixed record exchanges

Effect on operational systems
for up-to-the-moment data requests

Mergers and acquisitions

S
T
A
T
U
S

Q
U
O

Figure 6.2  Force field analysis for adopting an ORB.

Adopting an Enterprise Data Warehouse   59

The mergers and acquisitions restraining force diminishes since an ORB
would be one way to deal with the multiple systems resulting from a merger or
acquisition.

There was a perception in the industry that neither CORBA nor DCOM were
widely adopted and that using one or the other or both was too complex for many
programmers. Whether the perceived lack of industry adoption or inherent complex-
ity was actually true is irrelevant at this point. These perceptions are seen as restrain-
ing forces. Web services have just the opposite perception—they are seen as easy to
adopt widely by industry and easy for most programmers to use. Perception in this
case might well be the reality.

The very nature of creating interoperable, networked resources means that there
could be a negative impact on operational systems when requests come in through
an ORB. Many operational systems have not been designed to receive indeter-
minate or unexpected processing requests. These requests sometimes can have a
negative impact on the performance of those systems. So, the effect on operations
systems can be a restraining force if up-to-the-moment processing of those requests
is needed.

Adopting an Enterprise Data Warehouse

The story about C. R.’s business trip mentioned that his organization had, at one
time, an enterprise data warehouse (EDW). An EDW is one of the oldest and most
successful ways to integrate and consolidate data from multiple systems. Commonly,
it involves extracting data from existing systems and loading it into a single, central
location to form an EDW. Using an EDW can be complementary to using an ORB
or Web services. The force field analysis for this approach is shown in Figure 6.3.

In this figure, the easier exchange of data as a driving force is replaced with
easier access to enterprise-wide data. This data is loaded from existing systems using
various techniques that extract, transform, and load (ETL) the data in the EDW. Using
ETL techniques means there is usually less impact on operational systems because
the extracts of data from these systems could be done at a time convenient for the
operational system. This minimal impact on operational systems is a significant
driving force. Easier access to enterprise-wide data also allows the use of business
intelligence (BI)/analytics software to find patterns or new business opportunities
based on a wealth of data that could be stored in an EDW.

Most of the restraining forces are issues with the semantics or meaning of the data
and the standardization of data definitions. Not surprisingly, these issues are similar
to those involved with attempts at adopting standard data elements when existing
data definitions are different. In Figure 6.3, the semantic translation is added to show

60   Technical Forces Driving the Adoption of SOA

the need to transform data, which can itself be a restraining force. Over time, how-
ever, these restraining forces have become weaker for two reasons:

n	 A subset of the software industry is devoted to the development of ETL soft-
ware. This software generally simplifies the development of the data extractions
from existing systems, any semantic translation or transformation, and the loading
of the data into the EDW.

n	 More industry standards have become available. Initially efforts were related
to electronic data interchange (EDI) and more recently to Web services.

Additional restraining forces include problems related to what data to store in the
EDW and the delay or latency in getting data into the EDW. The issue of what data

Driving forces Restraining forces

Reduced maintenance costs

Easier access to enterprise-wide data

Different semantics in data sources

Lack of industry-standard definitions

Delays in getting data to the warehouse

Deciding what data to warehouse

Adopting an enterprise data warehouse (EDW)

Minimal effect on operational systems

Brittleness of fixed record exchanges

Semantic translation

Costs of development

Use of business intelligence/analytics

Redundancy of data

Data quality issues

S
T
A
T
U
S

Q
U
O

Figure 6.3  Force field analysis for adopting an EDW.

Adopting an Enterprise Data Warehouse   61

should be stored in an EDW will likely always remain a restraining force. The
strength of this restraining force will vary by organization. The delay or latency of
data is the result of performing data extracts at times convenient to the operational
systems.2 Consequently, the very latest data is not always available in the EDW. To
some organizations, this is no problem. Others, however, may find this a significant
restraining force.

Redundancy of data also can be seen as a restraining force. Whenever data exists
in more than one location, it is possible that the data will have different values for
various reasons. This could result, in part, from the latency of data mentioned earlier.
For example, the value of an account balance may be updated by the operational
system but not forwarded to the EDW until some later date. At a given point in time,
you could see two different values for the same account when looking at the EDW
and the operational system.

Data quality issues are potentially a restraining force, because much depends
on the quality of the data available. If data to be stored in the EDW is lacking in
quality, there are options available for improving its quality. Changes could be
made to improve data quality at the time it is entered. For existing data, the qual-
ity could be improved at the source. If that is not possible, the ETL software used
to load data could be used to improve the quality of the data. Sometimes this is
called data cleansing. This, of course, assumes the quality can be improved in
some way that lends itself to programming. Data quality is a significant topic and
you are encouraged to study it further if this is potentially a restraining force for
your organization.

Finally, the brittleness of fixed record exchanges is a maintenance issue. If the
EDW is changed in some way, it could create a need to change some or all the
ETL programs. Because of the nature of fixed record exchanges, there is always a
chance that not all ETL programs would be updated and the wrong data would be
extracted. As a result, the transform and load portion could fail or the wrong portion
of the record could be inappropriately transformed and loaded into the EDW, result-
ing in essentially a corrupted EDW. This brittleness problem is being addressed by
the tagged record structure of XML or name/value pairs (see page 27). The tagged
structure significantly reduces the chance of corrupting the data in the EDW and
also presents the opportunity to reduce maintenance costs related to ETL programs.
So, as a restraining force, the brittleness of fixed records will be reduced. Many
of the restraining forces will be reduced because of efforts related to industry-
standard semantic vocabularies and Web services as represented by the gray arrows
in Figure 6.3.

2 For some organizations, this can be a certain time of day. For others who cannot stop their operational
systems, it may be necessary to provide small data extracts throughout the day.

62   Technical Forces Driving the Adoption of SOA

Adopting an Enterprise Service Bus

Often when integrating systems, there is also a need to propagate data among internal
systems. For example, if a customer’s address is changed in one internal system, you
would want that change to appear as soon as possible in other internal systems.

Propagating data changes, however, can lead to complexity because of the
possible number of connections among internal systems. If each internal system were
directly connected to the other internal systems shown at the bottom in Figure 2.1,
you could have up to 10 possible connections. Of course, if you need to propagate
an update, such as a customer address, to multiple systems, you could end up in the
situation shown in Figure 6.4. In this situation, every system potentially may need to
communicate with every other internal system.

Message Routers

A good solution to this problem is to add a message router to internal systems, as
shown in Figure 6.5. Such routers have been around for some time. They are also
known as application routers. There are various ways a router could know the other
internal systems that need to receive a certain type of update. The individual internal
systems would not need to know who receives such updates. As a result, the number
of interconnections is reduced, as shown in Figure 6.5.

Internal
system

Internal
system

Internal
system

Internal
system

Internal
system

Figure 6.4  Possible connections for internal systems.

Adopting an Enterprise Service Bus   63

A message router usually needs to transform the data in some way to match the
format of the data expected by the receiving system. Figure 6.6 shows examples of
such transformations. Internal system A at the left is sending data in tagged XML
format. Internal system B at the right expects a tagged XML format but expects the
tags to be different. For example, instead of the tag <name> in system A, system B
expects the data to be tagged with <customer>. The tags for phone and postal code
data also are different. Finally, system C expects a fixed record format. This fixed
format is shown at the bottom in Figure 6.6.

Adapters

These transformations do not occur automatically. Some type of adapter is needed
to transform the data in the messages. Adapters also need to transform instructions
that may be needed for communication. Some example instructions are starting a
transaction, ending a transaction, getting query results, and so on.

The use of Web services and the development of SOAs created a need for a router
that worked with Web services and that had adapters for various existing systems.
Those capabilities are provided by an ESB. The term bus reflects the analogy of a

Internal
system

Internal
system

Internal
system

Message
router

Internal
system

Internal
system

Figure 6.5  Interconnections when using a message router.

64   Technical Forces Driving the Adoption of SOA

computer hardware bus—a common architecture in computer design that uses stan-
dard connections. A computer bus makes it easier to transfer data and instructions
among a computer’s subsystems. Similarly, an ESB makes it easier to transfer data
and instructions among various software systems: services, business processes,
applications, legacy systems, BI/analytics software, and so on.

Internal
system A

Internal
system C

Internal
system B

Message
router

Fixed record format

XML tagged format

Barry & Associates, Inc.
612-321-8156
14597 Summit Shores Dr
Burnsville
MN
55306
United States

XML with
different tags

<customer>Barry & Associates, Inc.</customer>
<telephone>612-321-8156</telephone>
<street1>14597 Summit Shores Dr</street1>
<street2></street2>
<city>Burnsville</city>
<state>MN</state>
<zip>55306</zip>
<country>United States</country>

<name>Barry & Associates, Inc.</name>
<phone>612-321-8156</phone>

<street1>14597 Summit Shores Dr</street1>
<street2></street2>
<city>Burnsville</city>
<state>MN</state>
<postalcode>55306</postalcode>
<country>United States</country>

Figure 6.6  Example transformations needed with a message router.

Adopting an Enterprise Service Bus   65

Going back to the analogy of the audio-video (AV) system, the receiver plays a
role that is similar to an ESB. For instance, you can assemble an AV system without
a receiver just as you can use Web services without an ESB. Nevertheless, a receiver
gives you more options and usually facilitates having multiple components—espe-
cially if differing ages of the components require different connections (like adapters
that connect existing software systems).

An ESB can play multiple roles. As a router, an ESB monitors, logs, and controls
routing of messages among services and systems. An ESB’s adapters enable the
transformation and conversion of protocols and messages. The adapters ensure
that the message vocabulary used within the ESB is the organization’s standard
semantic vocabulary. The delegation of routing, protocol conversion, and message
transformation to an ESB gives services and other software systems a convenient
way to easily plug into a bus system.

There is no standard feature list for an ESB. If you are considering an ESB,
be sure that it provides all the features you need. Figure 6.7 depicts an ESB with
adapters for existing software systems.

The force field analysis for adopting an ESB is shown in Figure 6.8. In this figure,
a driving force is consistent enterprise-wide data in all applications. This means that

Data
warehouse

Adapter

BI/Analytics

Adapter

ORB services

Adapter

ESB

Adapter

Internal
system system

Internal

Adapter

system
Internal

system
Internal

system
Internal

Figure 6.7  ESB with adapters for existing software systems.

66   Technical Forces Driving the Adoption of SOA

customer data, for example, would be the same no matter what system used or man-
aged that data. The impact on operational systems is minimized since any one system
only needs to communicate with the message router and not all the other internal
systems.

Most of the restraining forces are the issues with the semantics or meaning of
the data and the standardization of data definitions that have been discussed earlier.
Message routing, like EDW, needs to deal with semantic translation and this is shown
as a restraining force. Over time, however, these restraining forces have become
weaker as more industry standards become available.

Additional restraining forces include problems related to what data to route
and the delay or latency in getting data updates distributed to various internal
systems. The issues of what data to route and the delay of getting data updates dis-
tributed will likely always remain restraining forces. Data quality issues similar to
EDW can occur with message routing. Obviously, it can be potentially disastrous

Driving forces Restraining forces

Reduced maintenance costs

Minimal effect on operational systems

Reduced development time

Consistent enterprise-wide data

Delays getting data updates distributed

Deciding what data to route

Adopting an Enterprise Service Bus (ESB)

Semantic translation

Costs of development

Different semantics in data sources

Lack of industry-standard definitions

Brittleness of fixed record exchanges

Data quality issues

S
T
A
T
U
S

Q
U
O

Figure 6.8  Force field analysis for adopting an ESB.

Adopting a Service-Oriented Architecture   67

to route poor-quality data. With message routing, however, you do not have the
option of data cleansing used in conjunction with ETL software. The quality of
data needs to be improved at the source for existing data and at the point of entry
for new data.

Finally, the brittleness of fixed record exchanges is a maintenance issue.3 If the
format of the record going to the message router is changed, it could create a problem.
Because of the nature of fixed record exchanges, there is always a chance that the
wrong data is routed. This brittleness problem is addressed by the tagged record
structure of XML or name/value pairs. Such a structure significantly reduces the
possibility of corrupting data routed by the ESB and presents an opportunity to
reduce maintenance costs related to message routing programs. So, as a restraining
force, the brittleness of fixed records will be reduced over time.

Web services adapters for packaged software provided by vendors also reduce
costs of development. The adapters allow Web services connections with internally
developed systems or packaged software. The arrow depicting the restraining force
of development cost, however, is not shown as gray since there still can be other
significant development costs related to an ESB.

An ESB can work with EDWs and existing middleware solutions such as an
ORB. This is shown in Figure 6.7. The ESB would have adapters that, in turn, would
connect to the EDW and ORB. Note that the ORB is represented as a bus much like
an ESB and that it is labeled as “ORB services.” This is because an ORB provides
communication for services much like an ESB.

Adopting a Service-Oriented Architecture

Web services, middleware integration (i.e. ORB services), data warehousing, and
an ESB can all work together to support a service-oriented architecture. Figure 6.7
shows these technologies. This is essentially a more detailed diagram of C. R.’s
organization, which was described in Chapter 2. In the bottom of Figure 2.1, you
can see the internal systems in C. R.’s organization along with the repository. The
three internal systems at the left in Figure 2.1 relate to the three systems at the left in
Figure 6.7; this time we add the detail of middleware ORB services with an adapter
for these internal systems. The two internal systems at the right in Figure 2.1 relate to
the two systems at the right in Figure 6.7. The online repository at the bottom center
in Figure 2.1 is shown as a data warehouse in Figure 6.7. Finally, the BI system
shown connected to the repository in Figure 2.1 is also shown as connected to the
data warehouse in Figure 6.7. The data warehouse, however, is not in a virtual private

3 For an explanation of the brittleness of fixed formats, see page 27.

68   Technical Forces Driving the Adoption of SOA

cloud as shown in Figure 2.1. The reasons C. R.’s organization made that change will
be covered later.

The drive to use Web services is reducing the technical change issues. This makes
moving to an SOA technically easier. Figure 6.9 shows how using Web services
affects adoption of an SOA overall. This figure combines the force field analyses
for Web services (see Figure 5.5), enterprise-wide software (see Figure 6.1), ORB
middleware (see Figure 6.2), data warehousing (see Figure 6.3), and an ESB (see
Figure 6.8). The combined technical restraining forces are shown at the right. The
gray arrows represent the technical restraining issues that will diminish as industry
adopts and expands the use of Web services.

Three restraining forces from enterprise-wide software (see Figure 6.1) were not
added to Figure 6.9: departments have different needs, dependence on software prod-
ucts, and conversion to new software. These represent issues for moving to standard
enterprise-wide software. Since an SOA does not require changing to enterprise-
wide software, these restraining forces were dropped.

There is an addition to Figure 6.9 related to services. A restraining force has been
added at the bottom right in Figure 6.9 for the identification and design of services.
This is critical for an SOA and was discussed in Chapter 3 on page 30.

The analysis in Figure 6.9 is interesting because it illustrates that as the tech-
nical restraining forces shown in gray diminish, we are left with technical issues
related to business and general design. The arrows at the top right represent busi-
ness issues such as costs of development or concerns that a product doesn’t have
all the features that might be needed. There are, of course, other design issues, but
these arrows are representative of basic design issues facing any effort to create
an SOA.

At the left in Figure 6.9 are the driving forces for adopting an SOA using Web
services. The strength of these forces will vary by organization. Also, there very well
might be additional driving forces for a particular organization. Nevertheless, by
almost any measure, there are tremendous driving forces for the adoption of an SOA.
You may want to try adding technical driving and restraining forces to this figure that
are specific to your organization. There is space at the bottom of Figure 6.9 to add
technical driving and restraining forces.

Figure 6.9 illustrates that there are some industry-wide technical issues remaining
that restrain the adoption of SOAs, but those issues will diminish and, over time, the
remaining restraining forces will be typical business and design issues.

This is not to diminish the business and design issues. They are not necessarily
easy to solve, but they are the stuff of what developing an architecture is all about.
Essentially, each organization must decide if it makes business sense to create an
SOA using Web services. If it does, then there are design issues that need to be
addressed.

Adopting a Service-Oriented Architecture   69

Driving forces Restraining forces

Products don’t provide

Adopting a service-oriented architecture (SOA)  technical

Costs of development

Standards are evolving, not fixed

Different semantics in data sources

Semantic translation

Mergers and acquisitions

Lack of industry-standard definitions

Brittleness of fixed record exchanges

Deciding what data to route

Delays getting data updates distributed

Deciding what data to warehouse

Delays in getting data to the warehouse

Redundancy of data

Effect on operational systems
for up-to-the-moment data requests

Data quality issues

S
T
A
T
U
S

Q
U
O

Interoperable networked applications

Easier exchange of data

Availability of external services

Support of Web services in products

Emerging industry-wide standards

Reduced maintenance costs

Reduced development time

Availability of training and tools

Easier access to enterprise-wide data

Consistent enterprise-wide data

Minimal effect on operational systems

Use of business intelligence/analytics

Mergers and acquisitions

Business
issues

Design

issues

Reduced brittleness using tags
or name/value pairs

everything that is needed

Identification and design of services

Figure 6.9  Force field analysis of technical issues related to adopting an SOA.

70   Technical Forces Driving the Adoption of SOA

Summary

This chapter focused on the technical change issues related to the adoption of a
service-oriented architecture. It analyzed integration techniques that preceded SOAs
and the ESB, which is often used in SOAs. At the end of the chapter, the analyses
were assembled into a combined force field analysis of the technical change issues
for adopting an SOA using Web services. The discussion showed that by combining
these integration techniques:

n	 The standardization efforts related to the use of Web services are assisting other
integration techniques. This was shown in the weakening restraining forces for
adopting an enterprise data warehouse and for ORB middleware.

n	 Because the use of Web services does not require abandoning existing systems or
data storage, this further reduces barriers to the adoption of an SOA as part of an
integration strategy.

n	 There are many driving forces for adopting SOAs.
n	 Over time, many technical restraining forces will diminish and the remaining

restraining forces will be typical business and design issues.

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00007-5

71

This chapter provides force field analyses for adopting two types of cloud provid-
ers: software as a service (SaaS) and platform as a service (PaaS). Towards the end
of the chapter, the analyses will be combined with the analysis for service-oriented
architectures (SOAs). I will show that using cloud computing generally increases
the number of technical driving forces for adopting an SOA. Cloud computing also
increases the strength of some of the existing technical driving forces for adopting
an SOA.

Contents
Adopting Software as a Service (SaaS)	 72
Adopting Platform as a Service (PaaS)	 74
Adopting Service-Oriented Architecture with Cloud Computing	 76
Summary	 79

Technical
Forces Driving
the Adoption
of Cloud
Computing

C
hapter 7

72   Technical Forces Driving the Adoption of Cloud Computing

Adopting Software as a Service (SaaS)

There have been many examples of SaaS cloud providers1 in this book. The audio-
video (AV) example at the beginning of Chapter 4 uses multiple SaaS cloud provid-
ers. The story of C. R.’s trip mentions the customer relationship management (CRM)
service that resides in the public cloud.

Figure 7.1 illustrates the driving and restraining forces for adopting SaaS. For this
analysis, the forces affecting the adoption of an SOA are not included. This analysis
looks at only SaaS. Including SaaS in an SOA will be analyzed later in this chapter.

Some of the forces affecting the adoption of SaaS are similar to adopting any
software package. These appear in the upper right in Figure 7.1. There are restrain-
ing forces such as the service might not do everything that is needed and you may
feel uncomfortable depending on a particular service. It would be reasonable to
be concerned whether the service provider will keep up with new features or capa-
bilities needed for effective use of a CRM service, for example. Also, conversion
to a new system, whether in the cloud or not, can be a restraining force.

Other restraining forces are shaded in gray in Figure 7.1 to indicate they dimin-
ish with time. The first one is security. Security is often one of the biggest concerns
when considering a move to a cloud provider. If you look to the left side, you will
see security is a driving force as well. The reality is that major cloud providers
might be more secure than a data center run by your organization. Cloud providers
can hire the best security people because security is so important and the security
provided is usually cutting edge. Cloud providers certainly can be targets for secu-
rity attacks, but all this really does keep the security as high as possible. Since the
data centers for major cloud providers are so big, they can keep equipment and
software up to date because of economies of scale. Availability or uptime of a ser-
vice and the Internet is similar to security. This appears on both sides in Figure 7.1.
Just like security, cloud providers have the equipment and expertise to maximize
availability and Internet availability will continue to improve. Both security and
availability restraining forces will diminish over time, effectively increasing secu-
rity and availability as driving forces for the adoption of SaaS like a CRM service.

Mergers and acquisitions might be a restraining force if the organizations use dif-
fering services or a system for something like CRM. On the other hand, the organiza-
tions might use the same service. Another option is that some industries may quickly
move to a common semantic vocabulary, making a merger or acquisition less of a
restraining force. In fact, Figure 7.1 shows related diminishing restraining forces,
such as different semantics in data sources, semantic translation, and standards are
still evolving. These are all related to standards.

1See page 42 for a discussion of PaaS.

Adopting Software as a Service (SaaS)   73

Mergers and acquisitions along with a standard semantic vocabulary are shown as
dashed lines at the lower left in Figure 7.1. This indicates that they might not apply to
all organizations or industries. Similarly, Internet speed as a restraining force is shown
with a dashed line because speed concerns will not be an issue for all organizations.

The remaining forces are driving forces. Some are the same as in earlier analyses.
These are reduced development time, reduced maintenance, and reduced brittleness
using tags or name/value pairs. Also, major SaaS cloud providers for such services
as CRM offer training and tools if needed.

A new driving force is the lower initial investment in software and hardware since
SaaS does not require the same upfront investment as a data center. With SaaS such

Driving forces Restraining forces

Reduced maintenance costs

Reduced development time
Conversion to using the service

Dependence on the service

Adopting software as a service (SaaS)

Mergers and acquisitions

Service doesn’t provide everything
that is needed

Security

software and hardware
Lower initial investment in

Use of a standard semantic vocabulary

Reduced brittleness using tags
or name/value pairs

for easier exchange of data
Availability of apps and APIs

Mergers and acquisitions

Availability of training and tools

Standards are evolving, not fixed

Different semantics in data sources

Semantic translation

Ongoing cost on an incremental basis

Security

Availability (uptime) of the
service/Internet

Availability (uptime) of the
service/Internet

Internet speed

S
T
A
T
U
S

Q
U
O

Figure 7.1  Force field analysis for adopting SaaS.

74   Technical Forces Driving the Adoption of Cloud Computing

costs are paid for on an incremental basis as an ongoing cost (another driving force).
Also, services with an SaaS cloud provider usually have application programming
interfaces (APIs) as well as applications. Both make it easier for exchanging data.
The applications and APIs mean that data from the service can be accessed/updated
from a mobile device as well as systems running in your data center.

Adopting Platform as a Service (PaaS)

At one point, C. R.’s organization decided to store its enterprise data in the cloud
instead of in a data warehouse. The organization built the new data store using a PaaS
provider. Storing data in the cloud accommodated storage needs changing over time
as well as changing use/analysis of the data over time. Cloud computing provides
such elasticity. This way, C. R.’s organization only pays for what it uses. With cloud
computing, it is not necessary for C. R.’s organization to invest in the hardware and
software needed to handle peak use.

Let’s assume a database management system was used in the cloud and that
C. R.’s organization wrote custom software around the database management system.
Also assume the PaaS provider has business intelligence (BI)/analytics software that
works with the database management system.

Like many organizations, C. R.’s organization saw remarkable growth in the
amount of data it maintains. To handle that amount of data, it chose a big data solu-
tion offered by a PaaS provider. Big data is a somewhat fuzzy term that refers to
large and complicated data sets that may not be easily managed by traditional
database management systems. A big data solution offered by a PaaS provider
might be a NoSQL2 database management system. There are a variety of NoSQL
database management systems on the market. Most are designed to work with big
data.

Figure 7.2 shows the analysis for adopting a PaaS for implementing a big data
storage solution in the cloud. Many of the same forces shown in Figure 6.3 for an
enterprise data warehouse also apply here. These are the restraining forces of devel-
opment costs: deciding what data to store, possible delays in getting data to the data
store, issues related to the redundancy of data that is stored in multiple locations,
and possible data quality issues for the data being stored. The driving forces include
easier access to enterprise-wide data, reduced maintenance costs, reduced brittleness
using tags or name/value pairs, minimal effect on operational systems, and the use
of BI/analytics.

2 NoSQL is usually defined as “not only SQL.”

Adopting Platform as a Service (PaaS)   75

The discussion of security and availability (uptime) of the service/Internet dis-
cussed in earlier for the adoption of an SaaS also applies here. The remaining dimin-
ishing forces were discussed on page 59 for adopting an enterprise data warehouse
or in the discussion for adopting SaaS earlier in this chapter.

Driving forces Restraining forces

Reduced maintenance costs

Adopting platform as a service (PaaS) for data storage

Costs of development

Security

software and hardware
Lower initial investment in

Reduced brittleness using tags
or name/value pairs

Standards are evolving, not fixed

Different semantics in data sources

Semantic translation

Ongoing cost on an incremental basis
Security

Delays in getting data to the data store

Deciding what data to store

Redundancy of data

Data quality issues

Minimal effect on operational systems

Use of business intelligence/analytics

Easier access to enterprise-wide data

Brittleness of fixed record exchanges

Lack of industry-standard definitions

Internet speed

Availability (uptime) of the
service/Internet

Availability (uptime) of the
service/Internet

S
T
A
T
U
S

Q
U
O

Figure 7.2  Force field analysis for adopting PaaS.

76   Technical Forces Driving the Adoption of Cloud Computing

Just as in adopting a SaaS, there are driving forces of lower initial investment in
software and hardware and ongoing cost on an incremental basis. The PaaS cloud
provider manages the hardware and provides the software.

Adopting Service-Oriented Architecture with Cloud
Computing

This section discusses SOA with cloud computing using the SaaS and PaaS exam-
ples. Figure 7.3 shows the cloud computing providers for the CRM service and the
big data store. The CRM service is from a public SaaS cloud provider. The big data
store along with the BI/analytics uses a virtual private PaaS cloud provider. The
remaining internal systems are the same ones as were shown in Figure 6.7.

The PaaS includes tools to help develop, manage, and analyze the data in big data
stores. It provides an enterprise service bus (ESB) that is optimized for the big data
store and the BI/analytics software.

The Internet is represented by the horizontal shaded area. Web services are shown
as a black line within the shaded area. This represents that Web services protocols
(SOAP, REST, JSON, etc.) are a subset of the protocols that can be used on the Internet.

Note the adapters aligned with the big data, BI/analytics, and the CRM in the
cloud. They are needed because those services use a somewhat different semantic
vocabulary than the one used by C. R.’s organization.

Figure 7.4 shows the technical driving and restraining forces for adopting an SOA
with cloud computing. This basically adds forces related to cloud computing to Figure
6.9, which showed the driving and restraining forces for adopting an SOA. Figure 7.4
combines forces in Figure 6.9 with the forces related to adopting an SaaS CRM service
(see Figure 7.1) and PaaS to store big data and provide BI/analytics (see Figure 7.2).

In this analysis, the enterprise data warehouse was replaced with a big data store.
So, the restraining forces for adopting an enterprise data warehouse (see Figure 6.3)
have been reworded for storing big data (see Figure 7.2): deciding what data to store
and delays in getting data to the data store. Two business issues have been added:
dependence on cloud-based services and conversions to use cloud-based services. A
legal issue was added concerning contractual issues with the cloud provider.3 There
is a new possible design restraint of Internet speed.

3 See page 165 for more on legal issues related to cloud providers.

It is possible to have an SOA without cloud computing. At the end of Chapter 6, SOA
was analyzed without any reference to cloud computing. It is also possible to use cloud
computing without an SOA. For example, my AV system illustrated in Figures 4.1 and 4.2
uses SaaS cloud providers, but my AV system is in no way a service-oriented architecture.

Adopting Service-Oriented Architecture with Cloud Computing   77

Security and availability (uptime) are both diminishing restraining forces and
driving forces, as described for both SaaS and PaaS earlier in this chapter. In addi-
tion to security and availability (uptime), other new driving forces related to cloud
computing are lower initial investment in software and hardware, ongoing cost on an
incremental basis, and the possibility of using a standard semantic vocabulary.

Some of the driving forces related to SOAs are likely made stronger with cloud
computing; they are reduced development time, reduced maintenance costs, avail-
ability of external services, and the availability of applications and APIs for easier
exchange of data.

Over time, the remaining restraining forces will be typical business, legal, and design
issues. Adding cloud computing generally increases the number of technical driving

Adapter

Internal
system

Big data
store

Adapter

BI/Analytics

Adapter

ORB services

Adapter

ESB

CRM

Virtual Private Cloud Public Cloud

system
Internal

Adapter

system
Internal

Adapter

INTERNET
WEB SERVICES

ESB

system
Internal

system
Internal

Figure 7.3  Internal systems with cloud computing for a big data store and a CRM service.

78   Technical Forces Driving the Adoption of Cloud Computing

Driving forces Restraining forces

Adopting SOA with cloud computing — technical

Standards are evolving, not fixed

Different semantics in data sources

Semantic translation

Mergers and acquisitions

Lack of industry-standard definitions

Brittleness of fixed record exchanges

Deciding what data to route

Delays getting data updates distributed

Deciding what data to store

Delays in getting data to the data store

Redundancy of data

Effect on operational systems
for up-to-the-moment data requests

Data quality issues

S
T
A
T
U
S

Q
U
O

Interoperable networked applications

Easier exchange of data

Availability of external services

Support of Web services in products

Emerging industry-wide standards

Reduced maintenance costs

Reduced development time

Availability of training and tools

Easier access to enterprise-wide data

Consistent enterprise-wide data

Minimal effect on operational systems

Use of business intelligence/analytics

Mergers and acquisitions

Design
issues

Reduced brittleness using tags
or name/value pairs

Identification and design of services

Security

Availability (uptime) of the service/Internet

Internet speed

software and hardware
Lower initial investment in

Ongoing cost on an incremental basis

Security

Availability (uptime) of services/Internet

Use of a standard semantic vocabulary

for easier exchange of data
Availability of apps and APIs

Costs of development

Business and
legal issues

Products/services don’t provide
everything that is needed

Dependence on cloud-based services

Conversion to using cloud-based services

Contractual considerations

Figure 7.4  Force field analysis of technical issues related to adopting an SOA with
cloud computing.

Adopting Service-Oriented Architecture with Cloud Computing   79

forces for adopting a service-oriented architecture. Cloud computing also increases the
strength of some of the existing technical driving forces for adopting an SOA.

Summary

This chapter used force field analysis to show how various forces drive or restrain
the adoption of services from two representative SaaS and PaaS cloud providers.
The SaaS cloud provider was a CRM service and the PaaS cloud provider had a plat-
form supporting big data and BI/analytics. The major finding of this analysis is that
using cloud computing generally increases the number of technical driving forces for
adopting an SOA. Cloud computing also increases the strength of some of the exist-
ing technical driving forces for adopting an SOA.

This page is intentionally left blank

PA
RT III

Managing Change
Needed for
Web Services,
Service-Oriented
Architectures, and
Cloud Computing
Moving to a service-oriented architecture with cloud computing will be a
significant change for many organizations. Such change must be managed
properly, which involves considering the organization as a whole, the technol-
ogy to be used, and the people involved in the change.

The three chapters in the previous part of the book focused on technical
forces driving the adoption of Web services, service-oriented architectures, and
cloud computing. This part focuses on managing change that affects the people
in the organization when the organization is going through that adoption
process. People worry about the future of their jobs and worry about learning
new tools and technologies. An organization must address these issues and
concerns to achieve success.

Chapter 8 uses the force field analysis introduced in Chapter 6. It deals with
managing the human aspect of the change that occurs with the adoption of a
service-oriented architecture with cloud computing. Chapter 9 provides tips
on how to make development easier. Chapter 10 introduces incremental SOA
analysis that aims to help manage change by improving the project selection
process in a way that also improves the chance of success for the selected
project.

This page is intentionally left blank

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00008-7

83

Contents
Change	 85
Technical Change Issues Diminishing	 85
Resistance to Change	 85
Forms of Resistance	 88
	 Lack of Training/Understanding	 89
	 Power of Internal “Expert”	 89
	 Inertia—Why Change?	 90
	 Feeling That Jobs May Be Threatened	 90
	 Not Invented Here	 91
	 Our Problems Are Special	 91
	 Loss of Familiarity, Competence, and Control	 91
Suggestions for Addressing Resistance to Change	 92
	 Selecting the Right People	 92
	 Use a Second Set of Eyes	 93
	 Really Listen	 93

Change Issues

C
hapter 8

84   Change Issues

Managing the human aspect of the change that occurs with the adoption of a service-
oriented architecture (SOA) with cloud computing can be a significant challenge.
Chapter 7 showed that as technology and standards evolve, technical issues dimin-
ish, leaving the remaining restraining forces related to business, legal, and design
issues. This chapter shifts the focus to human change issues. These issues most often
manifest themselves in resistance to change. Forms of resistance and reasons for the
resistance are discussed as well as ways to address such resistance. To anchor these
concepts of resistance, I have included some of my own experiences with resistance
to change.

At the end of this chapter is a worksheet for laying out change issues and responses
to those issues. There is also a consolidated force field analysis for adopting an SOA
that builds on the analyses covered in Chapter 7.

After completing my undergraduate work, I had a job as an analyst in a government
agency. This was in a research group of about 40 people. Most of us worked in one
large room. One day a senior analyst decided to move some of the desks around in the
large room and, without discussing it with the people involved, went right ahead with
the move. Orville, one of the older analysts, was not there at the time. Orville came
back to find his desk in a different spot. Finding out who made the change, Orville ran
screaming at the senior analyst and literally pushed him against the wall. Orville had an
emotional problem that meant he did not deal with change well at all. The senior ana-
lyst, however, could have avoided this confrontation if only he had spoken with Orville
before making the changes. Surprises of this nature trigger an automatic response of
fright, flight, or fight and a variety of other reactions. Orville’s emotional problems
probably amplified a normal response.

	 Communicate at Many Levels	 94
	 Seek Appropriate Avenues to Involve People	 94
	 Get Resistance Out in the Open	 94
	 Ask for Participation and Form Partnerships	 95
Some Resistance Scenarios	 95
	 But It’s So Complicated!	 95
	 Guerilla Tactics	 98
	 More Guerilla Tactics	 100
	 The Elephant in the Room	 101
Worksheet for Resistance Issues and Suggestions	 102
Consolidated Analysis for Adopting an SOA with Cloud Computing	 102
Summary	 105

Resistance to Change   85

Change

Not everyone who has problems dealing with change has emotional problems that
make transitions worse. In fact, most of us deal with change better than Orville
did in this true story. Nevertheless, there are ways to make any change easier for
people and for the organization in which they work. This chapter deals with human
change related to adopting SOAs with cloud computing and ways to deal with that
change.

Technical Change Issues Diminishing

There are multiple types of issues related to change. The drive to use Web services
in an SOA with cloud computing is reducing the technical change issues. In other
words, the barriers to change related to technology are diminishing. This makes
the technical change easier. Figure 8.1 is from Chapter 7 and shows the technical
forces affecting the adoption of an SOA with cloud computing. The gray arrows
represent the technical restraining issues that will diminish as industry adopts and
expands the use of this technology. Why these forces will diminish was discussed
in Chapter 7.

The analysis in Figure 8.1 is interesting because it illustrates that as the technical
restraining forces shown in gray diminish, we are left with technical issues related to
business, legal, and general design. These are shown at the right in Figure 8.1. There
are, of course, other business and design issues, but these arrows are representative
of basic business and design issues facing any effort to create an SOA with cloud
computing.

At the left in Figure 8.1 are the driving forces for adopting an SOA with cloud com-
puting. The strength of these forces will vary by organization. Also, there very well might
be additional driving forces for a particular organization. Nevertheless, by almost any
measure, there are tremendous driving forces for the adoption of an SOA with cloud
computing.

Resistance to Change

If it makes sense for your organization to develop an SOA with cloud computing,
what other restraining forces need to be considered? Probably the strongest is a
general resistance to change.

Resistance is a common human response to change. Resistance to change, how-
ever, may very well be the biggest issue to address in achieving an effective SOA
with cloud computing.

86   Change Issues

Driving forces Restraining forces

Adopting SOA with cloud computing  technical

Standards are evolving, not fixed

Different semantics in data sources

Semantic translation

Mergers and acquisitions

Lack of industry-standard definitions

Brittleness of fixed record exchanges

Deciding what data to route

Delays getting data updates distributed

Deciding what data to store

Delays in getting data to the data store

Redundancy of data

Effect on operational systems
for up-to-the-moment data requests

Data quality issues

Interoperable networked applications

Easier exchange of data

Availability of external services

Support of Web services in products

Emerging industry-wide standards

Reduced maintenance costs

Reduced development time

Availability of training and tools

Easier access to enterprise-wide data

Consistent enterprise-wide data

Minimal effect on operational systems

Use of business intelligence/analytics

Mergers and acquisitions

Design
issues

Reduced brittleness using tags
or name/value pairs

Identification and design of services

Security

Availability (uptime) of the service/Internet

Internet speed

software and hardware
Lower initial investment in

Ongoing cost on an incremental basis

Security

Availability (uptime) of services/Internet

Use of a standard semantic vocabulary

for easier exchange of data
Availability of apps and APIs

Costs of development

Business and
legal issues

Products/services don’t provide
everything that is needed

Dependence on cloud-based services

Conversion to using cloud-based services

Contractual considerations

S
T
A
T
U
S

Q
U
O

Figure 8.1  Force field analysis of technical issues related to adopting an SOA with
cloud computing.

Resistance to Change   87

Figure 8.2 shows the analysis of major driving and restraining forces related to
change that affect the adoption of an SOA with cloud computing. There are often
many restraining forces related to change. Also, if my vision of the future concerning
the roles of IT staff is correct, some of the restraining forces will be stronger. For
example, the restraining force of feeling that jobs may be threatened is very real as
an organization moves through the process of adopting an SOA with cloud comput-
ing.1 You may want to try adding driving and restraining forces that are specific to
your organization in the space at the bottom of Figure 8.2.

As a manager, be on the lookout for resistance—where there is change, there
will be resistance. The savvy manager is prepared for it and deals with it as it
occurs. Some people like change and look forward to it. Those are the people who

1 Many of these same forces have existed for the adoption of any technology for many years. Nevertheless,
I think the expanding adoption of SOAs will have significant impact on IT organizations.

Driving forces Restraining forces

Not invented here

Opportunity to learn new skills

Feeling that jobs may be threatened

Lack of training/understanding

Power of internal "expert"

Inertia — why change?

Our problems are special

Adopting SOA with cloud computing — change

Availiability of training and tools

Loss of familiarity, competence,
and control

S
T
A
T
U
S

Q
U
O

Figure 8.2  Force field analysis of change issues related to adopting an SOA.

88   Change Issues

are looking for variety and they are your advocates in a technological change. There
are also the folks who hate change. They may try to keep change from happening.
In the middle are the “wait and see” folks. They are concerned about the impact
of change on them, but they are willing to wait and see what happens. Often, this
is the larger group. These are the people to focus on because you can win them to
your side. Plenty of communication and participation can do wonders. The more
employees worry and wonder, the stronger their resistance becomes. It’s just human
nature.

William Bridges has written extensively on the topic of change in organizations
for the past several decades. Bridges’ work, Managing Transitions,2 is particularly
helpful for the manager planning a technology change. His model views change as a
series of events going from an ending, which is the way things used to be, to a begin-
ning, which is the way things will be in the future when the project is complete.
Between the two is the neutral zone. This is a stage in which few things are the way
they were and it’s not clear how they will be.

It is in the neutral zone, according to Bridges, where resistance can be found,
because it is a stage that can be marked by confusion and uncertainty. In the neutral
zone there are no clear markers and no promises. The savvy manager will be careful
when dealing with people who may be in the neutral zone because they are seldom
being difficult on purpose. They are unsure and concerned and may not realize their
resistance. Sensitivity to the neutral zone is important because the manager can often
help team members through this stage more quickly.

Forms of Resistance

Recognizing resistance can take some practice because many of its forms could eas-
ily be justified as a concern or a request for information. We all want employees who
care enough about their work that they are willing to want to understand and state
their concerns. As new projects are presented, it should be expected that employees
will have many questions. In fact, one of the best things a manager can do is com-
municate in many ways and many times what the project entails. Some employees
do better with written communication (email, blogs, websites, etc.), some with group
meetings, and some with one-on-one casual conversations. All have their place in a
plan for communicating change.

When a manager has communicated plans and time has passed, some team mem-
bers may still be asking questions or raising concerns. Sometimes team members

2 William Bridges, Managing Transitions: Making the Most of Change (New York: Da Capo Lifelong
Books, 2009).

Forms of Resistance   89

may be raising new concerns on a regular basis. If you have carefully considered the
objections and found no grounds for the concern, this may well be a sign of resistance
to change. Resistance to change in people can take many forms. Constant questioning
about new concerns is a classic sign that resistance may be taking place. It also can
take the shape of a form of confusion, in which the team member just can’t quite get
clear on how or why the project will be the way it is planned. Such a team member
is probably not doing this on purpose. It’s possible that this person is just not able to
hear what is being communicated because of some discomfort with it. This person
may well be in the neutral zone and is just trying to find his or her way through it.

Other forms of resistance may include silence or easy acceptance. People may
be silent for many reasons, but it is easy to assume that silence means acceptance.
That is not always the case, so be on the lookout for it. Easy acceptance can also be
misleading because it may mean that the person has not considered the ramifications
of the change; when he or she does think about it, you may find that this person upon
whom you were counting on is no longer on board.

The following sections go into some detail on forms of resistance that were shown
as restraining forces in Figure 8.2. These forms of resistance will also be referenced
in the remainder of this chapter and the next two chapters.

Lack of Training/Understanding

Sometimes people are resistant to change because they do not have the training to
understand what the new project or job will entail. Many people become familiar
with their job and want it to stay the same. It is particularly challenging for them
if the change in their job involves new technology. Almost everyone has a concern
about not measuring up in a new environment and that may well be the situation here.

A second issue in this situation is communication. Sometimes people just aren’t
getting the message that they need to hear. In a change situation, you can count
on some people putting the most negative spin on any change. That’s just human
nature. In a time of uncertainty, most people will fear for the worst. That’s why plenty
of communication is of great importance. If people will need new training for the
change, be sure they are reassured that they will get it.

Finally, the timing of training is critical. All too often, people are trained well in
advance of using new technology. That is the equivalent of no training. People should
be able to immediately use the new technology after training.

Power of Internal “Expert”

An internal expert can be a formidable ally or a formidable roadblock in a change
effort. Such an expert knows the current system and possibly the previous systems in
such a way that can be of great help. On the other hand, if this person is not on board

90   Change Issues

for the change effort, he or she can raise all sorts of barriers. The savvy manager
needs to find a useful way to involve an internal expert in the development process.

The most probable form of resistance will be in raising concerns about the qual-
ity of the new system, and this person is likely to use his or her expert position in
the organization to raise the level of recognition of the concern. It’s easy to overlook
what an expert has to lose in a change situation. This person is going from being an
acknowledged success to a situation that is new. Because of the newness, it is impos-
sible to know whether this person will be able to retain expert status or even if he or
she will be needed in the new situation. An expert in this position may fear a loss of
competence and control. That may be a big risk for such a person. This is especially
true when the current expert may not have the kind of training that will make moving
to the new system possible.

Inertia—Why Change?

Sometimes it’s difficult to effect change in a system just because “things” have always
been done a certain way or because the system is seen as working okay. This creates
a sense of inertia. People who are part of the system ask why a change is needed.
This can make it difficult when the new way of doing things will create a leap for-
ward and will bring possibilities that have not been present before. Communicating
the advantages of the new options may help, but when people are comfortable in the
current situation, any change can be challenging and bring resistance into play.

In fact, it may be that our brains are wired for inertia. Christopher Koch reported
in CIO Magazine3 on this phenomenon. He states that the:

“... prefrontal cortex’s capacity is finite—it can deal comfortably with only a
handful of concepts before bumping up against limits. That bump generates
a palpable sense of discomfort and produces fatigue and even anger. That’s
because the prefrontal cortex is tightly linked to the primitive emotional cen-
tre of the brain, the amygdala, which controls our fight-or-flight response”.

The article goes on to explain how parts of our brain interact and why we prefer
to continue doing things the same way.

Feeling That Jobs May Be Threatened

Given the pace of technological change today, it is difficult for most people to stay
knowledgeable on new technology. This means that any change may feel threatening

3 Christopher Koch, “The New Science of Change,” CIO Magazine, October 2006, http://www.cio.com.
au/article/170700/new_science_change/.

Forms of Resistance   91

to many people. Often, technology changes are put into place so that staffing can be
as lean as possible. That means that not everyone will have a job after the change in
technology occurs. Those people who have not kept their technical skills up may have
reason to worry. Because worry tends to be contagious in an organization, most every-
one will be worrying. For some people, the outlet for this worry will be resistance.

As the use of Web services is more widely adopted for making connections and
you move to a service-oriented architecture, some jobs will really be threatened. We
are in the process of replacing custom-coded systems with reusable services. As a
manager, you will need to keep this very legitimate concern in mind when creating
an SOA with cloud computing.

Not Invented Here

Most people take pride in their work. It’s easy for managers to forget or not even
know the blood, sweat, and tears that went into a project that was completed some
time ago. The people who worked on that project do remember. When they hear that
the work that they did will be replaced, there’s always a sense of loss. In the excite-
ment of bringing in the new, the organizational focus ignores the earlier contribution
of the people and their project and focuses on the shortcomings of the old. This can
lead to resistance on the part of those who have worked on the old system.

Our Problems Are Special

I’ve worked with many groups of people working on technology issues. Amazingly,
almost all of them believed that the technical problems that they had to solve were
quite complex and unusual. From my perception as an outsider, many of those same
problems struck me as fairly normal for the industry that they were in or the work
that they were doing. There were, of course, some twists that required attention, but
those twists were not significant enough to scuttle a project.

This is a common excuse used by technical people to avoid using an off-the-shelf
product or a cloud-based service. On a rare occasion it may be true, but most often it
is just a means of resistance used by those who want to keep things as they are or to
develop something new on their own.

Loss of Familiarity, Competence, and Control

Neuroscience research has uncovered information that explains a great deal about
resistance. According to David Rock and Jeffrey Schwartz,4

4 David Rock and Jeffrey Schwartz, “The Neuroscience of Leadership,” Strategy + Business, May 2006,
http://www.strategy-business.com/article/06207.

92   Change Issues

Managers who understand the recent breakthroughs in cognitive science can
lead and influence mindful change: organizational transformation that takes
into account the physiological nature of the brain, and the ways in which it
predisposes people to resist some forms of leadership and accept others.

Rock and Schwartz stress that change of any kind is a form of pain that causes seri-
ous reactions in the brain. In fact, research using magnetic resonance imaging (MRI)
indicates that organizational change may be perceived by the brain as not that differ-
ent from being attacked by an animal in a forest.

Change that affects a worker’s sense of familiar comfort about how to do
the work, being competent at it and in control of it, may be the breeding ground
for the resistance that so endangers many projects. The human brain appears to
process information on several levels. The familiar is processed somewhat auto-
matically and takes less energy. New processes are perceived as possible errors
and require more energy. According to Rock and Schwartz, “Trying to change
any hardwired habit requires a lot of effort, in the form of attention. This often
leads to a feeling that many people find uncomfortable. So they do what they
can to avoid change.”

Suggestions for Addressing Resistance to Change

The first step in addressing any kind of resistance to change is to recognize it
for what it is. Sometimes resistance easily stops a project because it is never
addressed. When the manager notices that nothing seems to be happening or
that the project is far off schedule, it is past time to consider that resistance is
at play.

The best bet is to anticipate resistance, even before the project starts. This means
that you can set things up to avoid some of the resistance and you will be in a good
situation to address it should it arise. The next sections discuss ways to address resis-
tance to change.

Selecting the Right People

One key to the success of any project is careful selection of people to work on the
project. Selecting a person because he or she has been around a long time isn’t gener-
ally a good reason for that person to be on the team. Choosing someone because he
or she doesn’t currently have a project is not a good reason either. Sometimes staffing
for a project is seen as a way to resolve problem personnel situations. That’s also not
the route to success on your project.

Suggestions for Addressing Resistance to Change   93

The best approach to selecting the right people is to identify what kind of skills
and experience are needed on the project team. Then find the people in your orga-
nization who can meet those standards. Be sure these people have a positive, open
mind. If people cannot be found internally, then you need to consider new hires or a
contracting situation.

My experience tells me that a big factor in failed projects is a lack of people with
the skills and experience required. This is something that will hinder any project.
The outcome of any project can only be as successful as the skills of the people who
work on it.

Use a Second Set of Eyes

Another practice that can be of great help in limiting resistance is pairing team
members together. There are many methodologies that call for paired team mem-
bers. There are excellent technical reasons to do this, but there are also reasons
that will address resistance to change. Careful team selection means that you are
unlikely to have both people in the pair with the same issues. That means that nei-
ther person will be left stewing on his or her own. In addition, the possibility that
both people will be allowing the schedule to slip or participate in other resistant
activities is less likely.

Really Listen

One of the best things that you can do with someone who you think may be expe-
riencing resistance is to listen. By that, I mean really listen and not try to talk
the person out of his or her ideas. Most of the time, what we think is listening is
actually thinking about how to answer the person’s objections. If you find yourself
talking more than the other person, it means you aren’t really listening. If you find
yourself explaining things, then you aren’t really listening. Some people think
that just saying the same thing repeatedly will help improve understanding. When
you find yourself doing this, it means that you are not hearing what the person is
saying.

Sometimes what the person has identified as the problem is just the obvious
surface of the real problem. It is more effective to ask the other person questions
to probe into what might be behind the resistance. Ask questions such as, “What
is your concern about that?” Follow up your questions with a summary such
as, “So, you are concerned that if we implement this change, _____ might hap-
pen and that would be a problem because of _____.” Let the person clarify your
understanding until you both agree that you understand the other person’s point
of view.

94   Change Issues

If you listen in this way, you can even disagree with the other person, and the per-
son will feel that he or she has been heard. People don’t necessarily need agreement
to feel that they’ve been heard.

Communicate at Many Levels

An effective antidote to resistance is communication and plenty of it. It’s a human
response to anticipate the bad things that may happen and a communication vacuum
contributes to that.

To deal with resistance issues, regular communication in many forms is helpful.
People have different styles and it’s helpful to provide communication in as many
forms as possible so that each style gets its needs met.

It also can be helpful to establish a communication schedule so that people can
anticipate when more communication will be available to them. In fact, any promises
that are made must be met. Don’t overpromise and then not meet the promises. That
just sets up a foundation for mistrust.

And while you’re at it, think about communicating up the management chain
as well. Find methods that will be reassuring to management and create a schedule
that you can meet and that they can depend on. This helps protect your project from
rumor and innuendo.

Seek Appropriate Avenues to Involve People

Participation is another important part of avoiding resistance to change. The more
people feel part of something, the more they will support it. This can take a variety
of forms, including asking for people’s input and review. Be sure to be clear in your
request for information so that people really hear the request and believe it is really
wanted. I’ve seen situations where management asked for input and got none because
employees either didn’t hear it or didn’t believe it. If asking for input is not a regular
part of your organization’s culture, you will need to ask in a variety of ways. Some-
times a casual request at the water cooler creates a more believable request than a
general statement in an open meeting. And don’t forget to really listen to the input
and ideas.

Get Resistance Out in the Open

Naming resistance for what it is can bring it out into the open so that people can talk
about it. Talking about it takes away its power to disrupt.

It’s important to do this in a neutral and nonthreatening way. For example, don’t
point a finger and tell a person or group that they are resisting change. Such an
approach is likely to make things worse—even if it is true. It’s better to create a

Some Resistance Scenarios   95

situation where people can state their resistance on their own. Hold a team meeting
and create a comfortable situation by stating something like, “I’m sure you have con-
cerns about this change. I’ll bet that the new architecture is a little hard to understand
in such a short time. At least I know I’d feel that way.” Approaching the issue in this
way will make it possible to get the issue on the table for discussion.

Ask for Participation and Form Partnerships

Make sure you ask for participation and ideas and truly listen and consider them.
People can accept almost anything if they believe that their ideas have been taken
seriously. Create a partnership where you will be sharing information on a regular
basis so that participants become familiar with what the new system will be. As
they gain information, try to show how their competence will be needed. The more
information they have, the more control they are likely to feel about the future. If you
have people who don’t have the skills to be part of the future, address this with your
human resource people. Leaving these people in limbo can create great negativity
for the project.

Some Resistance Scenarios

This section includes scenarios from some of my own experiences with resistance to
change (of course, names and details have been altered). After each scenario, resis-
tance issues are listed and discussed. Then suggestions for addressing those resis-
tance issues are also listed and discussed.

As you read the following scenarios, you will see certain themes emerging. The
first is that resistance can take many forms and is not always immediately recogniz-
able as resistance. The second is that the person resisting change is often not even
aware of the motivation for his or her behavior.

But It’s So Complicated!

As he put a team together to replace an existing system, the manager felt fortu-
nate to be able to include a person who had worked on the existing system for
over a decade. Betty was a competent programmer and had a nearly encyclopedic
memory of why the existing system worked the way it did. She was also quite
articulate and seemed very interested in helping to create the replacement system.

The early investigations into how the replacement system should work went
well. Betty was quite helpful in making sure the team had all the details and idio-
syncrasies documented. She was also very helpful when it came to designing the
data model the replacement system would use.

96   Change Issues

Then something happened. As the team started to design how the software would
work, Betty started to bring up new issues that should have been uncovered in the early
investigations. Of course, it is understandable that some things would be overlooked,
but the number of these issues became overwhelming. Sometimes, these issues required
considerable rework to change what was already completed. It seemed as if Betty waited
until all the rework was done before bringing up another issue. And unfortunately, some-
times these issues also required rework. Eventually, however, the team seemed to have a
robust design and was able to answer many of Betty’s concerns on the spot.

Then things started to get a bit weird. When team members would answer one of
Betty’s concerns and show her how the design took into account the issue she raised,
Betty would often respond, “But it’s so complicated.” Betty was apparently convinced
that the existing system had to be more complicated than the replacement system.

Because of her experience on the existing system, Betty had a huge following in
this large organization. She was known and respected all the way up to the vice-presi-
dential level because she had worked with these people for decades. This replacement
system was also seen as critical to the organization’s future. So, when Betty started
moving up the management chain with her lament, “But it’s so complicated,” people
took notice. Management started to want to know why the group was doing this inferior
design and became worried about the future of the project. In fact, some vice presidents
started to threaten cancellation of the project if the IT group could not do a better job on
this critical replacement system. A lot of money was still allocated to completing this
project and they did not want to spend that much money on an inferior replacement.

More and more time was spent on meetings with upper management. The system
designers and analysts all had to attend numerous meetings. In those meetings, Betty
brought up issue after issue concerning how much more complicated the existing
system was compared to the proposed system. The dynamic was interesting. The
issues Betty brought up were often in terms that management could understand. The
explanation of how the proposed system would handle the issues often had to be in
terms of data models and software architecture. Many people in management hon-
estly did not understand the more technical explanations, so they were left with the
impression that Betty might have a point.

Time passed. Development slowed. Eventually, the project was canceled.
Sometime later, a packaged product was brought in to replace the existing sys-
tem. But as you might expect, Betty at first thought the packaged product would
work only to later discover that the packaged product needed much modification,
because the existing system was so “complicated.” That project was also canceled.

Resistance Issues in This Scenario

n	 Lack of training/understanding
n	 Power of internal “expert”
n	 Inertia—why change?

Some Resistance Scenarios   97

n	 Feeling that jobs may be threatened
n	 Our problems are special
n	 Loss of familiarity, competence, and control

Every technical change has incredible impact on the people involved with both the
new and old systems. In fact, every change of this type has winners and losers. As
development proceeds, people sometimes change camps.

In this scenario, Betty had worked hard over the years with the current system.
She was emotionally invested in it and was very impressed with how well it worked
and how important her role was. Because of her years of experience, she had created
a strong network of personal advocates for her point of view. Initially, she may have
been sure that no new system could possibly replace the system that she knew was
very complicated, so she was willing to work on the team to replace it. In fact, she
had already been on several committees in the past that had put the kibosh on replace-
ments because the existing system, and of course the work that it had to do, was so
complicated. In this particular situation, she was willing to participate and cooperate
on the team until it dawned on her that this replacement system might actually happen.
Then she began to raise issue after issue. When this happened, it became apparent that
on some level she had begun to feel challenged in her position as the resident expert.
I don’t believe that Betty knew she felt this way. I think she was challenged as an
expert on a deep level. The rest is history. Betty used all of her connections to stop this
project. Upper management can be notoriously fearful of failure and Betty’s concerns
fed right into that. Sometimes it may seem that anybody can kill a project because of
any “issue,” while it’s very hard to get enough people or the right people to back it.

Suggestions for Addressing Resistance

n	 Really listen
n	 Communicate at many levels
n	 Seek appropriate avenues to involve people
n	 Get resistance out in the open
n	 Ask for participation and form partnerships

The most important issue in this scenario is to recognize the human issues that
come with change. This has implications both for the people doing the work and
management supporting the work.

Technical people generally approach others in the organization—and questions
within the IT organization—from a technical perspective. While technical questions
must have technical answers, there are other issues at stake that, left unanswered, will
sink a project. In this case, Betty’s issues were not technical—they were personal.
The closer implementation came, the nearer she was to losing her standing as the

98   Change Issues

resident expert. So, naturally, the old system—her system—became more and more
complicated in her mind and irreplaceable.

From the start, listening to Betty should have been important, but, beyond that,
finding an important role for her in the new project should have been critical.
Because she had connections in upper management, perhaps she could have served
as communication person in the project, and an implementation role for the replace-
ment system would have been important. The new system would have required
training for employees, which might have been a good spot for her. Granted, find-
ing the right role might be challenging and might require some coaching or men-
toring to get her up to speed, but the alternative, in this case, was a failed project.

A second issue was not getting management on board. Betty was able to cancel a
project through a whisper campaign to her old buddies in management. This indicates
that management was not properly briefed or brought on board at the beginning of the
project, nor were they kept informed properly during development. This is another situ-
ation where technical people may oversell the technical answer and not carefully com-
municate, on a regular basis, the information that can be understood. The very technical
answers that can be so important and interesting to technical people may put off man-
agement who do not understand their significance. This means learning to go beyond the
technology to what the technology will do for the organization. What are the outcomes
that will make a difference to them? This should be the focus of technical/management
discussions. When this occurs, a project will be less vulnerable to a whisper campaign.

Guerilla Tactics

One of the best technical minds in the company, Nancy was given the responsibility
of designing and implementing the integration of two systems critical to her organi-
zation. The integration was somewhat controversial, with some seeing it as necessary
and others thinking it was the wrong direction. Nancy stated that she was in favor of
the integration and was given the responsibility for completing the project. She put
together a small team and set to work on the problem. For many in the organization,
this seemed to be about a two-month project. Nancy concurred.

At the two-month point, the project was not done. Nancy assured everyone that
it was well on its way. At four months, it was still not done. Again, Nancy said that
it was being properly handled; there were just a few glitches. At seven months, the
project was canceled.

Resistance Issues in This Scenario

n	 Power of internal “expert”
n	 Inertia—why change?
n	 Loss of familiarity, competence, and control

Some Resistance Scenarios   99

What happened? It turned out that Nancy really enjoyed working on the fringes
of technology. She found some academic research that seemed to fit this problem
quite well. Her team enjoyed working on the fringes of technology as well. They
put together quite an elegant plan that involved writing significant amounts of code.
Never mind that you could buy portions of the solution. Hooking that into the full
solution would be less elegant. Given her status in the company, little oversight was
maintained on any work she did.

What really happened? Although she had stated that she supported the integration
project, Nancy did not think it was the right direction for her company. She may not
have even been aware that she was using her emphasis on the elegant solution as a
way to kill the project, but that’s what happened.

Resistance is an emotional reaction that can leave people unaware of the motiva-
tions for their actions.

Suggestions for Addressing Resistance

n	 Selecting the right people
n	 Use a second set of eyes
n	 Seek appropriate avenues to involve people
n	 Get resistance out in the open
n	 Ask for participation and form partnerships

Managing brilliant, creative people has been a challenge since management began.
Harnessing that capability in a way that will benefit the organization can be over-
whelmingly difficult. In this particular case, Nancy either was not the right person
for the job or she was not managed properly. Selecting the right people for the
tasks in a technology project may be the most critical decision, but it is often
less studied than the hardware and software to be used. Nancy’s interest in the
fringes of technology could be very helpful to an organization, but in this case it
killed a critical, yet constrained, two-month project. Her management should have
foreseen this problem and could have either had someone else head the project or
paired Nancy with someone who could steer her brilliance in a more pragmatic
direction.

Second, Nancy and her organization were unaware of her true feelings about this
project. Managers need to be on the lookout for signs of resistance. When things just
don’t add up, resistance may be in play. Managers need to assess how things are going
and be ready to make changes. Nancy’s manager should have taken a closer look at
the project on an ongoing basis. Checking in at two months, when the project was to
have been completed, was too late. Using standard project management techniques, a
detailed schedule should have been developed and checkpoints, perhaps on a weekly
basis, should have been observed. Activities such as design walkthroughs, code reviews,

100   Change Issues

or inspections might also have helped. Given Nancy’s interest in the fringes of technol-
ogy and her possible resistance, these checkpoints should have been quite in depth. This
would have flagged the slowing schedule early on and changes could have been made.

More Guerilla Tactics

Todd had almost single-handedly built the company’s master record system. In fact,
he had also been involved in the construction of two successive generations of the
master record system. He had the respect of nearly everyone in the company. In this
case, that respect was so high that he was seen as a systems guru. Todd agreed that
it was once again time to upgrade the master record system. The present system was
not fast enough and cost too much to maintain. Todd saw this as an opportunity to
improve on his previous designs.

What Todd had built, however, was now available from numerous software vendors.
Some of those vendors could legitimately show that their packaged software products
could significantly outperform the system that Todd had designed. A technical review
of the capabilities of the packaged software products showed, to most everyone’s sat-
isfaction, that the software could perform as needed. But not for Todd. In meetings, he
often brought up arcane issues. When asked to document them, he agreed. But it never
happened and given his standing in the organization, his lack of follow-through was
overlooked. More meetings would bring more concerns. To everyone on the develop-
ment team, it was becoming clear that Todd had never been satisfied with the master
records systems he had designed and that he wanted one more chance to do it “right.”
The packaged software option would take away his opportunity.

Todd and the CEO of the company were close friends and had both been with
the company from its start. Eventually, this relationship allowed Todd to recreate his
master record system. It may not surprise you that the new system is still not as fast
as the packaged system and requires more maintenance.

Resistance Issues in This Scenario

n	 Not invented here
n	 Power of internal “expert”
n	 Feeling that jobs may be threatened
n	 Our problems are special
n	 Loss of familiarity, competence, and control

This scenario illustrates a huge shift that has already occurred in the software busi-
ness. Not that many years ago, most organizations had to rely on a systems guru and
a large staff inside the organization who could design unique applications to meet the
organization’s unique needs. Now many products and services can be used as is or

Some Resistance Scenarios   101

augmented to meet the organization’s needs. This is a huge opportunity for organiza-
tions to trim the cost of new systems.

The scenario does, however, point out the significant people issues involved in
this kind of change. The huge change is not only in the software but also in the staff-
ing needs that organizations will have in this situation. Gurus, like Todd, just won’t
be needed on an ongoing basis any more. They may be needed on the front-end
design stage, but that will be it.

This shift has huge issues for organizations in a number of ways. As in the earlier case
of Betty, Todd was bringing up arcane issues that seemed outside of the satisfactory tech-
nical reviews that were taking place. This should be a clue to management that resistance
may be part of the picture. Todd may not be aware of his personal interest in redesigning
the system, but it does appear that this was a wasted opportunity for the organization.

Suggestions for Addressing Resistance

n	 Selecting the right people
n	 Use a second set of eyes
n	 Get resistance out in the open
n	 Ask for participation and form partnerships

The challenge for management is to find a way that Todd’s abilities can be used in
a positive way, rather in the negative way that has emerged in this situation. If no
answer can be found, it is probably better for Todd that he move on before his techni-
cal skills become out of date. Although his relationship with the CEO might seem to
make him invulnerable to change, a better point of view would be to use that relation-
ship to help him find a fit where his skills would be of use.

The Elephant in the Room

George was a vice president of benefits who saw his organization as excelling at
providing specific internal services to its employees. He wanted a system that, as
he described it, would be the “Cadillac of systems” to support those services. Hav-
ing established himself as an internationally recognized expert in this area of inter-
nal employee services, he had convinced upper management to fund this effort.

Early on, an outside consultant was brought in by the IT department to help define the
needs of this internal system. It was clear to the consultant that there were several commer-
cial systems on the market that would easily support the needs of these internal systems.
The IT department told the consultant to not bring up this possibility because it was impor-
tant to George to build his own system and George was a vice president. In fact, George
saw the organization eventually selling his “Cadillac system” to other organizations.

Building such a system was more expensive than buying one on the market. No
one in IT, however, ever brought up the idea of buying a commercial product rather

102   Change Issues

than building one. While this system was being built, the organization’s income
decreased significantly in areas independent of the development effort. As a result, it
was determined that it did not make sense to spend this much money on such a fancy
internal system. The project was canceled after already spending many times more
money than a commercial product would have cost.

Resistance Issues in This Scenario

n	 Not invented here
n	 Power of internal “expert”
n	 Our problems are special
n	 Loss of familiarity, competence, and control

Telling the truth about technology can be a politically painful event, especially when
people in high places are the people who need the message. Many a manager has had
to deal with a “pet project” of upper management.

Suggestions for Addressing Resistance

n	 Communicate at many levels
n	 Get resistance out in the open
n	 Ask for participation and form partnerships

This is a case when “managing up” would be a good idea. In this scenario, no one
even raised the idea that commercially available software might work as well. Care-
fully planting the idea that this is possible could have been done in such a way that
the VP would get the message clearly. The VP’s need to have a special product might
also have been addressed on another project.

Worksheet for Resistance Issues and Suggestions

The scenarios above provide some examples of resistance issues and the possible
suggestions for addressing those issues. Of course, you may have other resistance
issues in your organization that may benefit from different sorts of responses.
Figure 8.3 provides a worksheet you can use to think about restraining forces you
may have added to Figure 8.2 and possible suggestions you could consider.

Consolidated Analysis for Adopting an SOA with Cloud
Computing

Figure 8.4 consolidates the driving and restraining technical forces from Figure 8.1 and
the driving and restraining forces related to change from Figure 8.2. The restraining
technical forces that will fade away over time (the ones shown in gray in Figure 8.1)

Consolidated Analysis for Adopting an SOA with Cloud Computing   103

have been removed from this analysis. Figure 8.4 shows that using Web services reduces
the technical issues restraining the adoption of SOAs with cloud computing and leaves

L
ac

k
of

 tr
ai

ni
ng

/u
nd

er
st

an
di

ng

Po
w

er
 o

f
in

te
rn

al
 "

ex
pe

rt
"

In
er

tia
—

w
hy

 c
ha

ng
e?

Fe
el

in
g

th
at

 jo
bs

 m
ay

 b
e

th
re

at
en

ed

N
ot

 in
ve

nt
ed

 h
er

e

O
ur

 p
ro

bl
em

s
ar

e
sp

ec
ia

l

Sele
cti

ng
 th

e r
ig

ht
 pe

op
le

A se
co

nd
 se

t o
f e

ye
s

Rea
lly

 li
ste

n

Com
m

un
ica

te
on

 m
an

y l
ev

els

See
k a

pp
ro

pr
iat

e a
ve

nu
es

 to
 in

vo
lv

e p
eo

pl
e

Get
re

sis
tan

ce
 ou

t i
n t

he
 op

en

R
es

is
ta

nc
e

is
su

es

Su
gg

es
ti

on
s

fo
r

A
dd

re
ss

in
g

R
es

is
ta

nc
e

L
os

s
of

 f
am

ili
ar

ity
, c

om
pe

te
nc

e,

an
d

co
nt

ro
l

Ask
 fo

r p
ar

tic
ip

ati
on

 an
d f

or
m

 pa
rtn

er
sh

ip
s

Figure 8.3  Resistance issues and suggestions worksheet.

104   Change Issues

Figure 8.4  Force field analysis for adopting an SOA with cloud computing.

Driving forces Restraining forces

Products/services don’t provide

Adopting SOA with cloud computing

Costs of development

Deciding what data to route

Delays getting data updates distributed

Deciding what data to store

Delays in getting data to the data store

Redundancy of data

Effect on operational systems
for up-to-the-moment data requests

Data quality issues

Interoperable networked applications

Easier exchange of data

Availability of external services

Support of Web services in products

Emerging industry-wide standards

Reduced maintenance costs

Reduced development time

Availability of training and tools

Easier access to enterprise-wide data

Consistent enterprise-wide data

Minimal effect on operational systems

Use of business intelligence/analytics

Mergers and acquisitions

Business and
legal issues

Design
issues

Reduced brittleness using tags
or name/value pairs

everything that is needed

Identification and design of services

Dependence on cloud-based services

Conversion to using cloud-based services

Internet speed

software and hardware
Lower initial investment in

Ongoing cost on an incremental basis

Security

Availability (uptime) of services/Internet

Use of a standard semantic vocabulary

for easier exchange of data
Availability of apps and APIs

Not invented here

Feeling that jobs may be threatened

Lack of training/understanding

Power of internal “expert”

Inertia — why change?

Our problems are special

Resistance
issues

Loss of familiarity, competence,
and control

Contractual considerations

S
T
A
T
U
S

Q
U
O

Consolidated Analysis for Adopting an SOA with Cloud Computing   105

business, legal, design, and resistance issues. Business, legal, and design issues will
always be with us. Resistance issues will form the biggest obstacles to the adoption of
SOAs with cloud computing.

Summary

The use Web services is rapidly removing many of the technical restraining forces
related to adopting an SOA with cloud computing. At the same time, these technolo-
gies are adding technical driving forces toward adoption. As a result, the primary
restraining forces within organizations for adoption of SOAs have to do with busi-
ness, legal, and design issues—and human resistance to change. Business, legal, and
design issues are part of developing any architecture. Change issues, however, could
trip up the adoption of an SOA. Ways to identify and address resistance were cov-
ered in this chapter along with scenarios of various forms of resistance. Chapter 9
will expand on dealing with resistance by providing some tips for managing change
issues.

This page is intentionally left blank

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00009-9

107

Contents
Design as Little as Possible	 108
	 Buy a System or Use One or More Existing Services	 108
	 Buy a Model or Adopt a Semantic Vocabulary	 108
Write as Little Code as Possible	 109
Reduce Project Scope	 110
Use a Methodology	 110
Use a Second Set of Eyes	 111
Use Small Teams	 111
Summary	 112

Tips for
Managing
Change
Issues During
Development

C
hapter 9

108   Tips for Managing Change Issues During Development

As with any human endeavor, there are easy ways and hard ways to do anything. This
chapter provides tips on how to make development easier. These tips come from my
development and consulting experiences. They are not intended to be comprehensive.
Nevertheless, they just might help you with managing change issues during development.

Design as Little as Possible

If you haven’t experienced “analysis paralysis,” you are a rare member of our profes-
sion. The design of a system can sometimes seem as if it will go on forever. The best
tip I can give you is to design as little as possible. It may sound counterintuitive, but
most of the successful projects I have seen are based on as little design as possible.
How do you do this? One way is to buy a system or use one or more existing services.
Another way is to buy a model or adopt a semantic vocabulary. Any of these tips will
narrow the amount of design that you must do.

Buy a System or Use One or More Existing Services

When you buy a system or use one or more existing services, you are essentially
leveraging existing software that you can plug into your overall architecture. Doing
this will reduce your design work. You can focus on the connections in your archi-
tecture and the unique parts of your architecture that you must design. When con-
sidering any type of software, be sure that it can participate in a service-oriented
architecture (SOA). As Web services are adopted throughout our industry, it will also
become increasingly possible to buy “plug-compatible” software components or use
cloud-based services that you can assemble into an SOA.

The change issues you will likely encounter are:

n	 Feeling that jobs may be threatened. Yes, in many cases they might be. You will
need to plan for this eventuality.

n	 Our problems are special. Yes, there are probably some special problems, but
should they be driving your development? In the rare case, I have seen this to be
true. In most organizations, however, there aren’t special problems and if you
look at the problems in a different way, it is possible to see how existing software
or services can address those problems.

Buy a Model or Adopt a Semantic Vocabulary

If there are good reasons to not buy software, you don’t need to start with a clean sheet
of paper. There are data models available for purchase that are applicable to most
segments of industry. Often these are referred to as universal data models. Universal
data models can work with both data warehouses/master databases or with big data in
the cloud. Similarly, there are semantic vocabularies designed for specific industries.

Write as Little Code as Possible   109

I cannot begin to tell you how many times I have seen people struggling to model
the same data or vocabularies where data models or semantic vocabularies already
exist. Frankly, how many different ways are there to model customers, employ-
ees, addresses, products, and so on? Yes, there are variations among companies.
Nevertheless, if you look at the universal data models or semantic vocabularies, many
of those variations are handled in elegant ways. In fact, usually experienced data
modelers develop the universal data models and semantic vocabularies—often these
folks are more experienced than any modelers you might find in your organization.
Months—yes, months—of modeling efforts in an organization fall short of almost
any universal model or semantic vocabulary. If you need to add something to an
existing model or vocabulary, it is usually a minor addition requiring minor modeling.

The change issues you will likely encounter are:

n	 Lack of training/understanding. The fact of the matter is that when confronted
with a universal data model or standard semantic vocabulary, many people don’t
see how it will work. Often, it is because they are stuck in their view of how the
system should work, based on what they have experienced. They are often trying
to “map” their understanding of the current system to the universal data model
vocabulary. This can be a stretch for some people.

n	 Power of the internal “expert.” Oh my goodness—bringing in a universal model
or semantic vocabulary can really threaten this person. Telling anyone that these
things will be better than something that this person—an expert after all—could
put together is a very difficult sell. You will need to plan for significant resistance
here. Chapter 8 provides some suggestions.

n	 Not invented here. It is really tough to realize that other people have actually
addressed many of your modeling issues. Even worse is the possibility that some-
one else may have done a better job.

n	 Our problems are special. This might be true around the fringes of a universal
data model or semantic vocabulary. In a rare case, it might be true in general. Be
sure to thoroughly search before accepting that your problems are truly special.

Write as Little Code as Possible

This sounds too easy, but it is true. Time and again, I see people writing more code
than necessary. Couple this with the fact that on average, professional coders make
100–150 errors per thousand lines of code,1 and you want to write as little code as
possible just to minimize the errors.

1 Watts S. Humphrey, in a Multiyear study of 13,000 programs conducted by the Software Engineering
Institute, Carnegie Mellon. Mentioned in “Why Software Is So Bad... and What’s Being Done to Fix It,”
Charles C. Mann, MSNBC Technology Review, June 27, 2002.

110   Tips for Managing Change Issues During Development

Of course, buying systems, buying models, or using existing services will reduce
the code you write. You should consider those options first. As Web services continue
to be adopted throughout our industry, it will become increasingly possible to buy
“plug-compatible” software components that you can assemble into an SOA.

If you have to write code, take a serious look at the systems you have. How many
times have you written the same code to validate a customer account? I know some
managers who have been able to identify the relatively few procedures they have that
have been written repeatedly. Factor those out. You might be surprised by how much
reusable code you have.

Reduce Project Scope

Many development methodologies emphasize reduced project scope and reduced
project times. Nevertheless, it is so tempting to create big projects. You and your
team need to come up with ways to minimize the scope of each project. Multiyear
projects are unthinkable. Twelve-month projects should be looked at skeptically. The
challenge to the manager is to create projects that can be completed in less than 12
months—less than 3 months would be even better.

Smaller projects are more focused and are more likely to succeed. Large projects
are likely to fail. Since 1994, the Standish Group has conducted studies on IT devel-
opment projects, compiling the results in the Chaos Reports. In 2005, Watts S.
Humphrey of the Software Engineering Institute looked at the Standish Group’s data
by project size. His research showed that half of the smaller projects succeeded,
whereas none of the largest projects did.2

Related to reducing project scope is the idea of building an SOA incrementally.
Chapter 10 provides specific suggestions in this area.

Use a Methodology

In all my years of consulting, I have only rarely encountered companies that are
really using any software methodology. Sure, they may say they are, but in reality
they are still “shooting from the hip” when developing software.

2 Watts S. Humphrey, “Why Big Software Projects Fail: The 12 Key Questions.” CrossTalk: The Journal
of Defense Software Engineering, March 2005.

Use Small Teams   111

Any methodology is better than no methodology. Yes, you can argue as to one
being better than another, but the plain fact of the matter is that if you truly follow
any methodology, you are going to be much better off than when just paying lip ser-
vice to the methodology or simply not using one.3

To take advantage of a methodology, invest in a tool that supports the methodol-
ogy. Paper systems or drawing tools that are not integrated with the methodology
often end up being not very helpful. Not using a tool lets people “cheat” or not stick
to the “rules” of a methodology.

Use a Second Set of Eyes

Many methodologies involve having at least one other person look at any particular
piece of work. Using a “second set of eyes” is critical. The trick, however, is really
using a second set of eyes. Have you been in a group code review where the pro-
grammer describes what is going on in the program and everyone more or less nods
their way through the review? How helpful is that really? Methodologies that require
someone other than the author to describe what is going on in an architecture, design,
program, and so on are much more effective. It requires that person’s second set of
eyes to really look and that second mind to really understand.

Use Small Teams

For years I have been recommending that people should consider the communication
issues in software development to be much like a dinner party. When you have a din-
ner party of seven or less, it is usually possible to have one conversation. As soon as
you have eight or more people at the table, the dinner party breaks into two conversa-
tions and no one hears everything that was said.

This is often what happens in software development. Communication is criti-
cal. Use a small team. Put them together in a one room. Let them focus on devel-
opment of their project; that means that the project is the only thing they are
doing.

3 One person who reviewed this manuscript for the first edition of the book commented that methodolo-
gies could be used as another form of resistance. He described how entrenched experts in an organization
can use methodologies as a covert means to ensure a project gets nowhere because of “the demands of the
methodology.” A variant of this would be using methodologies inappropriate for an organization, thereby
slowing development. I guess you need to be ever vigilant to resistance issues.

112   Tips for Managing Change Issues During Development

Summary

As stated at the outset of this chapter, these tips came from my development and con-
sulting experience. They are meant to improve your chances of being successful with
your development efforts. Chapter 10 uses three tools that address change issues.

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00010-5

113

Managing
Change with
Incremental
SOA Analysis

C
hapter 10

Contents
Tools	 114
	 Force Field Analysis	 114
	 Worksheet for Resistance Issues and Suggestions	 114
	 Decomposition Matrix	 115
Five Principles for the Incremental SOA Analysis	 121
Incremental SOA Analysis	 122
	 Business Process Analysis Lane	 123
	 Candidate Project Analysis Lane	 124
	 Deployment Selection Lane	 125
	 Select a Project with the Best Chance of Success	 125
	 Deployment Lane	 125
	 Vocabulary Management Lane	 126
Summary	 127

114   Managing Change with Incremental SOA Analysis

Service-oriented architecture (SOA) projects are no different from other IT projects
in that larger projects tend to fail and issues regarding change can scuttle projects.
This chapter introduces incremental SOA analysis. It aims to improve the project
selection process in a way that also improves the chance of success for the selected
project. This analysis takes into account both project size and the human change
issues discussed in the previous two chapters.

The incremental SOA analysis uses three tools that address change issues. Two
of the tools were discussed in earlier chapters: force field analysis and the resistance
issues and suggestions worksheets. This chapter introduces a third tool: the decom-
position matrix. The tools are intended to engage people in such a way that they can
come to their own resolution on what might be causing human change issues.

Tools

People are much more likely to deal better with change issues if they are engaged in
the change process. Chapter 8 suggested possible ways to address change issues. Of
those suggestions, the three tools used in this chapter allow you to:

n	 Use a second set of eyes
n	 Really listen
n	 Communicate at many levels
n	 Seek appropriate avenues to involve people
n	 Get resistance out in the open
n	 Ask for participation and form partnerships

It is important to try using all three tools in a group setting—with the appropriate
participants, of course. The tools are intended to get people talking and, hopefully,
thinking differently about their design work.

Force Field Analysis

Chapters 5–7 discussed force field analysis. It engages people in the process of iden-
tifying change issues. Force field analysis can be used in a group setting if you use
something like a whiteboard or flip chart.

Worksheet for Resistance Issues and Suggestions

The worksheet for resistance issues and suggestions introduced in Chapter 8 also
allows a group to problem solve. As with force field analysis, the worksheets can be
used with whiteboards or flip charts. The worksheets start with the resistance issues
identified in the force field analysis.

Tools   115

Decomposition Matrix

The decomposition matrix tool generates either business process or data flow dia-
grams. It does this using an algebra for design decomposition that Mike Adler pub-
lished in the 1980s.1

A feature of the decomposition matrix is that it does not look at all like a business
process or data flow diagram. Business process diagrams, for example, are a great
way to design a workflow. The problem for most of us, however, is that if we are
familiar with a given workflow, it is often difficult to see how it could be significantly
different. We all tend to repeat or recreate what we know. The decomposition matrix,
however, requires us to only think about inputs, outputs, and how they relate to each
other. The diagrams are generated for you based on the matrix of inputs, outputs, and
relationships.

I have the decomposition matrix tool implemented on one of my websites.2 It is
free to use. It can be used in a group setting if you have a computer with an Internet
connection hooked up to a projector.

Figure 10.1 shows a decomposition matrix of inputs, outputs, and relationships. It
allows you to discuss detailed issues one at a time instead of trying to juggle multiple
issues all together in a design. You only need to make a series of binary decisions.
Such a decision is whether a given input is related to a given output. Sometimes that
can generate a great deal of discussion and bring out design issues not previously
mentioned. The decomposition matrix assembles these simple decisions and gener-
ates a decomposition that might help you with your design process.

1 Mike Adler, “An Algebra for Data Flow Diagram Process Decomposition,” IEEE Transactions on
Software Engineering, 14(2), (Feb. 1988).
2 “Design Decomposition for Business Process and Data Flow Diagrams,” Barry & Associates,
http://www.designdecomposition.com/.

A significant issue when making any systems change, particularly in large organizations,
is getting agreement on what the changed system should do. This compounds the situa-
tion where it is often difficult to see how the changed system should be. Not only might
individuals have a difficult time thinking of how their workflow could be different, there
might be entirely different views of the workflow in different parts of an organization.
A tool like the decomposition matrix can be a way to address different views within an
organization by getting people to only think about inputs, outputs, and how they relate to
each other.

http://www.designdecomposition.com/

116   Managing Change with Incremental SOA Analysis

The tool on my website generates either business process or data flow diagrams.
Most people are familiar with business process diagrams. The data flow diagrams are a
way to get at the decomposition of services in an SOA. The decomposition matrix has
a specific definition of atomicity. Atomicity generally means that a business process
cannot be decomposed further (see page 17 for a general definition of atomic services).
The specific definition of atomicity used by the decomposition matrix is that a business
process task or a data flow process is atomic if every input relates to every output in the
decomposition matrix. In other words, there are check marks in every box of the matrix.
Atomic tasks and processes are an important aspect of the incremental SOA analysis.

It is possible that the decomposition matrix might give you some new ideas or
help you get past a sticking point in your design process. In that way, it acts much
like having another designer in the room. The decomposition matrix is not a design
methodology. It is meant to be a design aid. You can use it with whatever methodol-
ogy you prefer since it is just another “designer” in the room.

The next section provides an example of how this tool works.

Business Process Diagram

To illustrate how the decomposition matrix works, I will use an example from a series
of blog posts that start at http://www.designdecomposition.com/blog/?p=6. This
example uses a set of inputs and outputs for a travel coordinator. Using those inputs
and outputs, the decomposition matrix tool will generate a business process diagram.

Figure 10.1  Decomposition matrix example.

http://www.designdecomposition.com/blog/?p=6

Tools   117

The inputs and outputs in Figure 10.1 should be familiar to most people who
have taken a business trip. They involve finding airline flights, a rental car, and
hotel rooms for a set of travel dates along with making the reservations and
obtaining driving instructions. Figure 10.1 shows this decomposition matrix.

You need to consider the relationship between only one row and one column at a
time when using the decomposition matrix. These are the binary decisions mentioned
earlier. For example, you could describe the relationship of the first row and first
column as “the input of travel dates and locations that occurs before or concurrently
with the output for a flight availability request.”

The portion in italics is an example of the type of phrasing you should use. You
may read across the row or down a column using the italicized phrasing.

Considering just one row and one column at a time makes it easier to work with
larger designs. There is no need to try to keep the entire design in your head. You just
need to think about each relationship one at a time.

Arranging flights involves using the travel dates and locations to request a list of
available flights. Sometimes you may need to make multiple requests with different
flight times or you may make requests to multiple airlines. Figure 10.1 shows this
with a check mark in the second row, flight availability response, and first column,
flight availability request. The third row, flight reservation response, is not checked
in the first column, because you cannot have a response before a request.

The fourth column shows the inputs that occur before or concurrently with the
input to a car rental reservation request. Before making a reservation request, you
need to know that cars are available for your travel dates and locations. You also need
to know if flights and hotel rooms are available. You do not, however, need to reserve
a room before a car. On the other hand, car rental agencies often ask for a flight num-
ber at the time of rental. So there is a check mark in the third row, flight reservation
response, for the fourth column. This occurs before or concurrently with the output
for a car rental reservation request.

The generated business process diagram is shown in Figure 10.2. The diagram
uses a subset of the business process modeling notation (BPMN).3 The tool does not
generate labels for the tasks. I have added task labels to this diagram.

There are a couple of ways the generated diagram can give you hints that there are
problems with the check marks in your decomposition matrix:

3 Business process modeling notation (BPMN), Object Management Group, http://www.bpmn.org/.

This example is from the first edition of this book. The idea that a VPA—like the one in the

story about C. R.’s business trip—could make all travel arrangements was not considered

when I wrote the first edition. Nevertheless, making travel arrangements is an almost univer-

sally understood process so I decided it is still a useful example for the decomposition matrix.

http://www.bpmn.org/

118   Managing Change with Incremental SOA Analysis

Tr
av

el
 d

at
es

 a
nd

 lo
ca

tio
ns

H
ot

el
 a

va
il

re
qu

es
t

H
ot

el
 a

va
il.

 re
sp

on
se

H
ot

el
 re

se
rv

at
io

n
re

qu
es

t

H
ot

el
 re

se
rv

at
io

n
re

sp
on

se

O
bt

ai
n

dr
ivi

ng
di

re
ct

io
ns

D
riv

in
g

di
re

ct
io

ns
 re

qu
es

t
C

ar
 re

nt
al

 re
se

rv
. r

es
po

ns
e

C
ar

 re
nt

al
 a

va
il.

 re
sp

on
se

Fl
ig

ht
 a

va
il.

 re
qu

es
t

Fl
ig

ht
 a

va
il

re
sp

on
se

O
bt

ai
n

po
ss

ib
le

 fl
ig

ht
s

C
he

ck
 h

ot
el

av
ai

la
bi

liy

C
he

ck
 re

nt
al

ca
r a

va
ila

bi
lity

R
es

er
ve

 fl
ig

ht

R
es

er
ve

 h
ot

el
ro

om

R
es

er
ve

 re
nt

al
ca

r

C
ar

 re
nt

al
 a

va
il.

 re
qu

es
t

C
ar

 re
nt

al
 re

se
rv

at
io

n
re

qu
es

t

D
riv

in
g

di
re

ct
io

ns

re
sp

on
se

Fl
ig

ht
 re

se
rv

at
io

n
re

sp
on

se
Fl

ig
ht

 re
se

rv
at

io
n

re
qu

es
t

Fi
gu

re
 1

0.
2 

G
en

er
at

ed
 b

us
in

es
s

pr
oc

es
s

di
ag

ra
m

.

Tools   119

n	 If you have had trouble coming up with any of the labels, that could be a hint that
the inputs and outputs might not have the correct check marks or perhaps an input
or output was overlooked.

n	 If the diagram is confusing, that is a hint that the check marks might not be
correct. An example of something confusing is a request for something coming
in after its related response.

You can “play” with the inputs and outputs to see what happens to the generated
diagram. This is not a complete design tool. At some point you may want to tran-
scribe a generated diagram into your design tool, much like you would if you used
a whiteboard.

Data Flow Diagram

The next example generates a Web services API or services interface layer for legacy
systems. Figure 10.3 shows the decomposition matrix. The inputs are from some
type of legacy system. Some of the possible outputs are also shown in the decomposi-
tion matrix. It is obviously simpler than the real world, but it serves as an illustration
of how the tool can be used.

You can phrase a relationship in Figure 10.3 as “the input of invoice is used
directly or indirectly for the output of payments.” The italicized portion of the phrase

Figure 10.3  Decomposition matrix for services.

120   Managing Change with Incremental SOA Analysis

is important. Note that this is different from how relationships are described for
business process diagrams. In this case, we are dealing with data flow and not the
sequencing that business process tasks require.

Figure 10.4 shows the decomposition of services based on the matrix.4 The pro-
cesses have been labeled. Just like with the business process diagrams, the tool leaves
labeling up to the user. Again, if it is difficult to label a process or if the diagram is
confusing, that is a hint that the inputs and outputs may not be complete or that some
check marks are missing.

The top-level processes in Figure 10.4 represent the Web services API or service
interface layer. Some of the top-level processes have multiple outputs. This indicates
that the input parameters will need to specify the XML tags (in this case) to include
in the output. Such input parameters are not shown in data flow diagrams, but they

4 At the time the website was implemented, the Service Oriented Architecture Modeling Language (SoaML)
notation was not available. If you wish, it is not hard to manually create an SoaML diagram from the data
flow diagrams. SoaML specifications are from the Object Management Group, http://www.omg.org/spec/
SoaML/.

Figure 10.4  Decomposition of services.

http://www.omg.org/spec/SoaML/
http://www.omg.org/spec/SoaML/

Five Principles for the Incremental SOA Analysis   121

will be needed when you design the services. Any data flow diagram shows only the
flow of data and not the control input parameters.

The services below the top level are reusable components that have been factored
out. Depending on your implementation, you could implement them as services or as
library code components.

Just like with the business process decomposition, this tool allows you to “play”
with inputs and outputs to see the effects. At some point, you will want to transcribe
the decomposition into your design tool.

Five Principles for the Incremental SOA Analysis

The incremental SOA analysis uses these three tools in a way that improves the
chances of success for a project. There are five principles that provide the basis for
the incremental SOA analysis:

1.	 Make projects as small as possible. This has already been discussed in the
previous chapter, but in this technique “small” has a specific meaning. Projects
involve only a single atomic task in the business process diagram generated from
the business process analysis. For example, each of the tasks in Figure 10.2
would be a separate project.

2.	 Involve stakeholders appropriately and as much as possible. Engaging the
appropriate people was discussed in Chapter 8. The incremental SOA analysis is
designed for this type of engagement.

3.	 Make decisions as late as possible. The later you can make a decision, the more
likely you will have accurate or more complete information on which to make
your decision.

4.	 Weaken the restraining forces within the project as much as possible. Chapter 5
introduced force field analysis and described why weakening restraining forces is
often better than strengthening driving forces. By weakening restraining forces,
you are increasing your chances of success.

5.	 Realize that your SOA will never be done. For most organizations, an SOA
will be ever changing because it will need to respond to the changing nature of
business and technology. The primary goal of this incremental SOA analysis is
to eventually position your organization so that it can respond quickly to those
changes. It will provide you with a loosely coupled (see page 31) architecture
that should improve your organization’s ability to change. A secondary goal is
to leave you with functioning architecture whenever you stop. Budgets and other
demands often derail the best-laid development plans. With this type of analysis,
you should be able to restart your SOA development at some later time if work is
suspended for some reason.

122   Managing Change with Incremental SOA Analysis

Incremental SOA Analysis

Figure 10.5 shows the process for incremental SOA analysis. The workflow shown
in Figure 10.5 is my suggestion for how to implement the five principles for the
incremental SOA analysis.

Figure 10.5  Incremental SOA analysis.

Incremental SOA Analysis   123

This analysis is shown as a workflow because the diagramming provides a rigor
beyond a textual description. The following sections provide some notes for each of
the tasks and processes in this analysis.

Business Process Analysis Lane

The business process analysis lane is where the analysis starts. (The workflow in
Figure 10.5 is divided into five lanes—the business process analysis lane is at the
top.) The purpose of the activity in this lane is to develop a small number of candidate
projects that can move on to candidate project analysis described in the next lane.
The intent is not to analyze all of the organization’s processes. The assumption is that
there are some known opportunities for improvement suitable for analysis. The three
tasks in this lane are described in the following subsections.

Analyze the Business Process with Decomposition Matrix
or Other Technique

If you have a preferred analysis technique, use it. If you don’t, you might consider
using the decomposition matrix tool described earlier in this chapter.

The decomposition matrix provides a way to think differently about the system
you are about to analyze. This tool can be used to get information from the various
stakeholders. Ideally, you should do this in a group setting to allow the stakeholders
to share their views on the business process.

Modify the Business Process

Modify the business process until all tasks are atomic.

Analyze the Business Process for Services

Review the atomic tasks for the candidate project. Restricting work to an atomic task is
part of the principle of making projects as small as possible. A candidate project should:

n	 Be noticeably different. The point here is to avoid just replacing something that
most people don’t really see. For example, you could use Web services to replace
an in-house communication protocol. There is nothing wrong with that. It just may
not impress too many people with the power of SOA. What might impress people is
using the connection capability of Web services to combine internal information with
something from the cloud so that a business process is enhanced or made simpler.

n	 Be the only project you do for now. What if you only had time and money to do
one SOA-related project? That is consistent with the principle that your SOA is

124   Managing Change with Incremental SOA Analysis

never done but that you can build it incrementally as time and money permits. So,
pick something that is useful without needing a follow-up project.

Candidate Project Analysis Lane

The candidate project analysis lane analyzes the candidate project using force field
analysis along with the resistance issues and suggestions worksheets. This lane adds
an approach that might allow you to make projects even smaller.

Use Force Field Analysis for Each Project

As mentioned in Chapter 5, force field analysis uncovers the driving and restraining
forces for the desired change related to the candidate project. You can get a group
involved with the visual nature of force field analysis using flip charts or a whiteboard.
Having a group inspect the completed force field analysis may allow you to discover
that a project can be made smaller. For example, you may find that a restraining force
is the lack of a tool to develop the service interface. You could decide that experiment-
ing with development tools is a project unto itself. Therefore, the candidate project
could be divided into two projects. One project is tool experimentation and selection.
By dividing the candidate project into two projects, you eliminate a restraining force
on the original candidate project and you get two smaller projects—one that is only
tool selection. Presumably, the selected tool will also be used in future projects.

Use the Resistance Issues and Suggestions Worksheet for Each Project

The worksheet for resistance issues and suggestions (see page 102) lists the restrain-
ing forces found in the force field analysis and provides space for entering the sug-
gested ways to address each restraining force. As with force field analysis, inspecting
the completed worksheet may allow you to discover a way to make a project smaller.
For example, one restraining force might be the lack of experience with Web services
and another might be unfamiliarity with XML. The suggestions in the worksheet to
address both restraining forces might be a combined XML and Web services course.
That course could be a separate project. The original project could be divided into
two projects. In this way, you eliminate two restraining forces on the original candi-
date project and you get a smaller project. In this case, the smaller project is training.

Add the Project to the Candidate Pool

If force field analysis and the resistance issues and suggestions worksheet cannot make
the candidate project smaller, then that project can be added to the candidate pool. You
should have at least a few projects in the pool before selecting a project for deployment.

Incremental SOA Analysis   125

Deployment Selection Lane

The deployment selection lane selects the project for deployment. Only one process
appears in this lane, but for a given organization there could be more processes or
tasks based on the organization’s project selection criteria. For example, some type
of financial justification might need to be added at this point as a factor to be consid-
ered in project selection.

Select a Project with the Best Chance of Success

Following the principles of this analysis, pick the project with the shortest duration.
It will most likely be the one with the greatest chance of success. The duration of the
project is based on the estimation technique your organization uses, and the chance
of success is determined based on inspection of the final force field analysis and
worksheet for resistance issues and suggestions. Of course, these forces sometimes
can be difficult to quantify. Nevertheless, the force field analysis and worksheet pro-
vide a way to inform you whether one project versus another project is more likely
to succeed.

Note that there is a “+” at the base of this process in Figure 10.5. That indicates
that there are subprocesses. Since these subprocesses can vary by organization, the
details are not shown in the figure.

Deployment Lane

This lane has the workflow for deployment. Notice that decisions on vocabulary and
interface parameters have been deferred until this time in keeping with the principle
of making decisions as late as possible.

Analyze Vocabulary Needed for Interface

You might not have expected that the semantic vocabulary needs are deferred until
this point. In reality, the semantic vocabulary needed is not a factor until this point. If
additional vocabulary is needed, the workflow will move to the vocabulary manage-
ment lane.

Analyze Parameters Needed for Interface

Here you need to determine the parameters required for the service interface. If there
is a change in vocabulary or parameters, then it will be necessary to consider refac-
toring services.

126   Managing Change with Incremental SOA Analysis

Refactor Services Using Decomposition Matrix or Other Technique

If there is a need for additional vocabulary or parameters for the interface, then there
is a possibility that the services may need to be refactored. The refactoring of ser-
vices is part of deployment to keep the project self-contained and complete at the end
of deployment. This adheres to the principle where you need to assume your SOA
may never be done. You want to be at a reasonable stopping point of completion at
the end of every project. Refactoring ensures that the services are at the right level of
service granularity at the end of each project.

The refactoring of services suggests using the decomposition matrix or using a
technique of your choice to refactor services. If you use the decomposition matrix, the
website will generate diagrams with processes that can be either services or internal
functions. Each process will be factored at an atomic level. Those processes that have
interfaces with the business processes will be part of a service interface. The processes
that do not interface with business processes will most likely be implemented as a func-
tion. Of course, you may find yourself refactoring functions into services based on the
needs of that future project. Nevertheless, you should not anticipate refactoring. The
next project or projects may not require refactoring. This way, you have just as many
services needed right now as opposed to creating additional services in anticipation of
future needs. Besides, you might guess wrong on the factoring of future services.

Deploy Services and Business Processes

The deployment of services and business processes is shown as a process in the
model because organizations will have multiple tasks related to deployment. The
model ends after deployment. At this point, the system should be at a stable state with
new and or updated services, a semantic vocabulary sufficient for the services, and all
services at the right level of granularity.

Note that there is a “+” at the base of this process in Figure 10.5. That indicates
that there are subprocesses. Since these subprocesses can vary by organization, the
details are not shown in the figure.

Vocabulary Management Lane

The vocabulary management lane supports the deployment lane in cases where addi-
tional semantic vocabulary is needed.

Review Industry-Specific Vocabularies

No one should develop a new semantic vocabulary if it can be avoided. Developing a
vocabulary can become a black hole from which you may not return. In many organi-
zations, it is easy to find differing definitions of such common terms as serial number

Incremental SOA Analysis   127

or account. It is equally easy to find differing terms that have the same definition.
Arguing over who is right can be never ending.

The increasing global reach of even the smallest of organizations means that
it is probably more important to use vocabulary terms and meanings consistent
with the rest of the world rather than consistent within an organization. This is
one reason industry groups developed standard semantic vocabularies. It is best
to adopt that part of the industry vocabulary that is needed for the project’s ser-
vice interface. There is a partial list of industry vocabularies on page 179. You can
also use a search engine to find semantic vocabularies that apply to your industry.

Review Cross-Industry Vocabularies

If you cannot find a vocabulary designed specifically for your organization, then you
should look to cross-industry vocabularies. A good place to start is the Universal
Business Language (UBL), which is an OASIS standard (http://ubl.xml.org).

Develop Organization-Specific Vocabulary

As a last resort, develop an organization-specific vocabulary. If you find this neces-
sary, develop only what is needed when it is needed. As mentioned before, this effort
can easily become a black hole.

Add to the Organization’s Semantic Vocabulary

In whatever way you determine additions to the semantic vocabulary, add only what
is needed when it is needed. This is in keeping with the principle of making decisions
as late as possible. It also reduces the number of vocabulary decisions to only those
needed to support the current project, thus keeping the project duration and complex-
ity to a minimum.

Summary

This chapter showed how to coordinate the use of three tools to help in managing
change: force field analysis, the worksheet for resistance issues and suggestions, and
the decomposition matrix. Using these tools can engage people in such a way that
they might come to their own resolutions on technical and human change issues.
Finally, this chapter showed how to integrate these tools in an incremental SOA
analysis with the aim of reducing project size and increasing the chances of project
success.

http://ubl.xml.org

This page is intentionally left blank

PA
RT IV

Getting Started
with Web Services,
Service-Oriented
Architectures, and
Cloud Computing
In this part of the book, the focus shifts to getting started with Web services,
service-oriented architectures, and cloud computing. Chapter 11 provides
three basic experiments that use Web services and then uses the story about
C. R.’s business trip to address more advanced uses of Web services. It ends
with a vision of what Web services might mean for the future. Chapter 12
provides design concepts and considerations along with staffing and change
issues to take into account when establishing a service-oriented architecture.
It illustrates how properly designed service interfaces can make it easier for
an organization to respond to the chaos of modern business. It ends with
discussion of governance. Governance is important given the likely expansion
of services within an organization and the growing use of services external to
an organization. Chapter 13 discusses a way to evaluate external services and
the systems and hardware that support those services. Chapter 14 summarizes
the Web services, service-oriented architectures, and cloud computing related
to the business trip described in Chapters 1 and 2.

This page is intentionally left blank

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00011-7

131

Contents
All Web Services Connections Look the Same	 132
The Impact of Web Services	 132
Use of Web Services will Likely Spur Innovation	 133
Start by Experimenting with Web Services	 133
	 Use an External Service	 133
	 Develop an Internal Service	 134
	 Exchange Data Between Existing Systems	 135
	 Use an ESB	 136
	 Staffing Issues	 137
	 Likely Change Issues	 137
Adapt Existing Systems to Use Web Services	 138
	 Enterprise Database Warehouse	 138
	 Connect Components to Web Services	 140
	 Additional Systems	 141
	 Staffing Issues	 142
	 Likely Change Issues	 142

Getting Started
with Web
Services

C
hapter 11

132   Getting Started with Web Services

This chapter provides an approach to getting started with Web services. It provides
three basic experiments that use Web services and then uses the story about C. R.’s
business trip to address more advanced uses of Web services. At the end is a vision
of what Web services might mean for the future.

All Web Services Connections Look the Same

By now, you probably have noticed that the Web services protocols for connect-
ing internal services are no different than the protocols needed for connecting
internal services to external services. Web services and the pervasiveness of
HTTP connections make it relatively easy to connect internal and external ser-
vices together.

The Impact of Web Services

For many companies, the initial impact that Web services will have is to make exist-
ing forms of integration simpler. This will create more opportunities for integration
and data exchange. These opportunities may occur within an organization or between
organizations.

The story of C. R.’s business trip illustrates some examples of what Web services
(along with service-oriented architecture and cloud computing) might mean for all of
us. In addition to connectivity, we are seeing businesses provide all sorts of services
that can be integrated1 with internal systems. (This is the blurring of internal and
external services mentioned on page 37.) Advances in technology can take advantage
of these services and will eventually be able do to such things as handle travel
arrangements and help us manage our lives (as illustrated by the virtual personal
assistant in the story of C. R.’s business trip).

The integration opportunities presented by Web services are making the use
of Web services a requirement for many organizations. The software affected will
range from desktop systems and mobile devices to distributed enterprise systems and
sophisticated cloud-based systems.

1 With Web services, it is sometimes difficult to come up with the correct descriptive phrases. Integrated
is not exactly the best term because the services are provided in a seamless way at many locations on the
Internet. Another term often used is mashup, but that term does not give the sense that there is an architec-
ture. For the purposes of this book, I use integrated.

Vision of the Future	 142
Summary	 143

Start by Experimenting with Web Services   133

Use of Web Services will Likely Spur Innovation

The problem with predicting how Web services will affect our systems is that the
effect is not always immediately apparent. In some ways, it’s fair to compare the
evolution of the use of Web services to the evolution of the use of the Internet in how
it affects all that we do. For example, when the Internet first became available, who
knew that online shopping would be setting records,2 that we would connect with
friends and acquaintances via social networks, that the Internet would make it pos-
sible to stream movies and video to our desktop or TV, or that grandparents would
buy personal computers to exchange email or video chat with their grandchildren?
Web services constitute a similar situation in that businesses will think of all sorts of
new and creative ways to use this capability.

Another way to look at C. R.’s business trip is the importance of the Internet/
cloud and the services offered. The prevalence of connections in the cloud is enticing
developers to leverage those services into all sorts of new creative services that, in
turn, make adoption of a service-oriented architecture (SOA) an offer few businesses
can afford to refuse.

Start by Experimenting with Web Services

One way to get started with Web services is to consider small projects that have a
high chance of success. Keeping the use of Web services to something basic further
enhances the chance of success. Choose a project that will be helpful but not vital.
Choose team members who like to play with possibilities. Be sure to communicate
that the project is an experiment.

Use an External Service

Probably the best place to start is using an external service. There are many sim-
ple external services from which to choose. For example, you could use weather
forecasts, stock information, or news feeds. More examples of relatively sim-
ple external services can be found at http://www.programmableweb.com/apis/
directory.

2 “Holiday Shoppers Flocking Online Create Record Breaking Sales,” http://www.forbes.com/sites/
anthonydemarco/2011/11/27/holiday-shoppers-flocking-online-create-record-breaking-sales/.

http://www.programmableweb.com/apis/directory
http://www.programmableweb.com/apis/directory
http://www.forbes.com/sites/anthonydemarco/2011/11/27/holiday-shoppers-flocking-online-create-record-breaking-sales/
http://www.forbes.com/sites/anthonydemarco/2011/11/27/holiday-shoppers-flocking-online-create-record-breaking-sales/

134   Getting Started with Web Services

Perhaps the easiest project is to create a webpage that displays something avail-
able from an external service. This project would provide experience at using Web
services for sending and receiving messages. It will give you an idea of how Web
services work and where you might want to try your hand at developing an inter-
nal service. Figure 11.1 illustrates using an external service to display content on a
webpage.

Develop an Internal Service

Experimenting with the development of an internal service allows your organization
to get more deeply into the details of Web services. There are two options for devel-
oping an internal service:

■	 Develop an entirely new service.
■	 Develop a service that uses an existing system.

If you have existing systems that you would like to use with Web services, the
second option might be more useful.

This project is similar to the previous one. The difference is that the content dis-
played comes from an internal system. Examples of such access include obtaining
customer contact information or internal employee telephone numbers.

External
service

Website

Web service

External
service
content

Webpage

Figure 11.1  Using an external service to display content on a webpage.

Start by Experimenting with Web Services   135

This requires the development of an adapter. It will do two things:

1.	 Transform a Web services message into a request format that can be accepted by
the internal system.

2.	 Transform the response from the internal system into a Web services message.

There are adapter toolkits to help you build an adapter. Of course, if your organi-
zation is more likely to use existing adapters, consider either an open-source adapter
or a commercial adapter for an existing system and incorporate that adapter into
this project. Figure 11.2 illustrates using an internal service to display content on a
webpage.

Exchange Data Between Existing Systems

If your organization is likely to use Web services to exchange data between exist-
ing internal systems, then it would be appropriate to add an experimental project

Existing

format

Web services

Internal
system

Adapter

Website

Internal
system
content

Webpage

Figure 11.2  Using an internal service to display content on a webpage.

136   Getting Started with Web Services

that does just that. Figure 11.3 illustrates this exchange of data between internal
systems.

This project uses the experience from the previous experimental project of using
an adapter. In this project, however, two internal systems exchange data. For exam-
ple, both systems A and B may allow users to enter customer address and contact
information. If one system updates this customer information, the other system
should also receive the update. Another example might be that system A has the mas-
ter account for customer information and system B may request system A to validate
that a customer identification number is correct.

Both systems A and B would need adapters. The development would require
agreement on the semantics of the vocabulary in the messages exchanged by the
adapters. This would create the opportunity to investigate and possibly use the
semantic vocabulary developed by standards efforts in your industry.

Use an ESB

Many organizations are also likely to use an enterprise service bus (ESB). If your
organization is planning to use an ESB, then the previous experiment can be modified
to include one. Figure 11.4 shows the use of Web services with an ESB to exchange
data between internal systems.

The intent of this experimental project is to gain appreciation of the issues related
to message routing as well as experience in using an ESB. You probably won’t need
to buy an ESB for this experiment. There are open-source ESBs, some vendors may
let you try their ESBs, and—perhaps even simpler—some ESBs are available as a
service in the cloud.

Existing
format B

Existing
format A

Web services

Internal
system B

Internal
system A

Adapter Adapter

Figure 11.3  Using Web services to exchange data between internal systems.

Start by Experimenting with Web Services   137

Staffing Issues

It is important to pick the right people to do this experimentation. Frankly, in
most situations it is risky to involve people who have never expressed much
interest in trying something new. Instead, choose people who like to experiment
and take risks. For many organizations, it would be good to bring in someone
from outside the organization who is familiar with Web services to mentor devel-
opers during these efforts. The mentor would be a “second set of eyes” during
this experimentation stage and would be a great source of information. Keep the
project team small. A few people would be appropriate for most organizations.

Likely Change Issues

The most likely change issues you will encounter are:

■	 Lack of training/understanding. This is a rational concern. People will need
training on Web services. You will need to find the appropriate training for those
involved in the experimentation. Also, you need to be ready to dispel any misun-
derstandings concerning the use of Web services by your organization.

■	 Inertia—why change? Be prepared to communicate on many levels and in many
ways why you want this experimentation to occur. Be available for personal chats.
Be prepared, as well, to really listen to concerns expressed.

Existing
format B

Existing
format A

Internal
system B

Internal
system A

Adapter Adapter

Web servicesWeb services

ESB

Figure 11.4  Using Web services with an ESB to exchange data between internal
systems.

138   Getting Started with Web Services

Adapt Existing Systems to Use Web Services

Once you have some experience using Web services, look for some places in your exist-
ing systems where Web services could save time and money in the short term. At this
point, you might consider trying the incremental SOA analysis introduced in Chapter 10.
It might help you ensure that you are taking on the smallest, shortest-duration project.

To illustrate adapting existing systems to Web services, I’m going to return to the
story about C. R. His organization had a repository that was originally an enterprise
data warehouse (EDW). Like many organizations, C. R.’s had common data that was
replicated in multiple systems, creating an opportunity. For example, his organization
had common customer data in multiple systems. These systems were either developed
over time in separate departments or they were purchased software packages. Some
were systems used by other organizations that his organization had acquired over time.
In any case, the systems were different, had replicated data, and in some cases, incon-
sistent data. C. R.’s organization saw business advantages to creating more visibility of
customers for such purposes as cross-selling among departments, creating new pack-
ages of products for specific customers, and simply reducing waste in misrouted or
duplicated mail.

Enterprise Database Warehouse

For some people, the very idea of creating an EDW can be discouraging. Many of
us have had the experience of failed efforts to create master files like an EDW (see
page 100). Here are some tips:

■	 Use an existing master file. You might already have a master file that is part of
packaged software your organization owns. It might make sense to adopt that as
the master file. If you do not have a master file in packaged software your organi-
zation owns but are considering the purchase of packaged software, check to see if
the software being considered includes a master file that could be used as an EDW.

■	 Buy a model. This option is often overlooked. Many models can be purchased.
Sometimes they are referred to as universal data models (see page 108). The fact
is that, although every organization is unique in some way, most of the data is
pretty standard. For example, there are practical and flexible models for keep-
ing basic customer information such as addresses and other contact information.
Often, these models are simply better than anything an organization might build
itself. Experienced modelers who have created models for many organizations
usually are the people who design these models. If you buy a model, you should
resist any efforts to extensively modify it. See the next tip.

■	 Don’t start a modeling project. A modeling project opens your organization to
any number of restraining forces, including our problems are special, power of an

Adapt Existing Systems to Use Web Services   139

internal expert, and lack of training and understanding. The lack of training and
understanding is significant. Data modeling appears deceptively simple until you
get into it. Even if you are doing something as basic as a customer master, you can
get yourself pretty knotted up in the options of data modeling. A modeling proj-
ect also is an opportunity to add “bells and whistles” to a basic model. Starting a
modeling project is essentially creating an environment for “analysis paralysis.”

■	 Start small. Your EDW does not need to be perfect. It simply needs to be use-
ful or effective. Also, you can always add to your EDW at some later date. So,
if either an existing master file or a purchased model has many fields you could
populate, try to limit the data to what might be most useful. Don’t make the proj-
ect any larger than it needs to be. You can always add more data to the EDW later.

C. R.’s organization took on the task of data cleansing to populate the EDW.
Figure 11.5 illustrates this. An EDW is at the left in the figure. At the right is an
existing internal system, and existing applications are above the existing system.

Data
warehouse

Customer
data

Data

cleansing

Existing

application

Internal

system A

Customer &

other data

Existing

application

Figure 11.5  Creating a customer data warehouse.

Creating an EDW is a good time to make sure the data you are using is the best possible.
This process is often called data cleansing. Data cleansing can become a large project in
itself, depending on the existing system and the number of existing systems that will be
used for the customer master. You might consider purchasing an extract, transform, and
load (ETL) software product if you expect to use many existing systems that will require
significant data cleansing.

140   Getting Started with Web Services

It may seem that I have oversimplified what needs to be done. In a sense I have,
but only because at this point the EDW is meant to achieve a limited goal of con-
solidating a small amount of data—in this example, customer master data. In C. R.’s
story, the EDW did eventually grow to be very large. C. R.’s organization, like most
organizations, had multiple sources of customer data in its existing systems. This
process started with one existing system and then moved on to others.

Connect Components to Web Services

Figure 11.6 shows the three components that C. R.’s organization connected using
Web services:

■	 ESB
■	 EDW that was populated after data cleansing along with associated business

intelligence (BI)/analytics software
■	 Existing system using a Web services adapter

C. R.’s organization decided that to keep the EDW updated, changes were needed
to internal system A in Figure 11.6. Internal system A needed to send updates to the
EDW as they came in from the existing applications. Those updates were routed to
the data warehouse using the ESB. Internal system A was also updated so that the
data going to the data warehouse was of the highest quality.

Internal
system A

Customer &
other data

Existing
application

Existing
application

Data
warehouse

Adapter

BI/Analytics

Adapter Adapter

ESB

Customer
data

Figure 11.6  Connecting a data warehouse and an internal system with Web services.

Adapt Existing Systems to Use Web Services   141

Additional Systems

C. R.’s organization repeated the data cleansing and populating of the EDW for each
of their additional systems that would provide data for the EDW. Eventually, the
systems architecture looked like Figure 11.7.

With the data from the additional systems, the EDW is the source of data for
the development of future services. That reduced the impact on the existing internal
operational systems.

Internal
system A

Customer &
other data

Internal
system Z

Existing
application

Existing
application

Existing
application

Existing
application

Many existing operational internal systems

Customer &
other data

Data
warehouse

Adapter

BI/Analytics

Adapter Adapter

Adapter

Customer
data

ESB

Figure 11.7  Adding additional systems.

For some organizations, this might be an intensive process if there are inconsistencies
among the data sources. Sometimes these inconsistencies will not be able to be resolved
using programming. For example, if the same customer has two different addresses, it
will be necessary for a person to determine if the addresses should be the same or if they
represent two different locations of the same customer.

142   Getting Started with Web Services

In summary, for C. R.’s organization, the EDW and ESB:

■	 Reduced the risk of any one internal system not being able to complete process-
ing that is dependent on data from another system.

■	 Required using fewer adapters since each internal system needs only to have an
adapter that works with the ESB.

■	 Reduced the possible negative impact of requests for data that is outside the nor-
mal processing of the internal systems.

Staffing Issues

For this type of effort, costs could start to increase significantly because more people
are getting involved. At this point, you could have at least one person but perhaps
two or three people who have a reasonable understanding of Web services. They can
form the core of this team along with a few new people. The entire team, however,
should be under seven people. This is also a good time to establish the methodology
that will be used going forward.

Likely Change Issues

The most likely change issues you will encounter in this type effort are:

■	 Lack of training/understanding. This is still a rational concern. The new people
will likely need training. Don’t assume that the people who have been doing the
experimentation are the right ones to do the training. It would be best to have the
training done professionally so that any bad habits that may have crept in aren’t
passed along. Also, be ready to dispel any misunderstandings concerning Web
services and SOAs. This will likely require communication in many ways on
many levels, including upper management.

■	 Power of the internal “expert.” Be careful that an internal expert does not sink
the project in this stage. It is important that you select the right people and plan
for a second set of eyes for each person involved. This may help counter the inter-
nal expert if he or she is on the team.

■	 Our problems are special. This will show up if you buy a model. It will be impor-
tant to get this resistance out in the open as soon as possible so that you can deal with
it. Recall the “But it’s so complicated!” scenario on page 95. It could happen to you.

Vision of the Future

The effect of Web services means we are going to have fewer people involved in IT.
The jobs in IT will also generally change to creating architectures and often realizing
those architectures by making the connections to services in the cloud. At the same

Vision of the Future   143

time, the quality of software will improve because progressively less new code will
need to be written.

The industry will standardize on the capabilities of various services. An
analogy was provided earlier to how the audio-video (AV) industry eventually
settled on the capabilities of various AV components. The same will happen
with services. As this happens, it will become easier to find services in the cloud
and connect them with internal services. Already, fewer people build custom
software because it is cheaper to purchase commercial off-the-shelf software
and tailor it to an organization’s needs. This is a trend that will continue with
services. For many organizations, staying competitive will mean taking advan-
tage of the services available in the cloud. Some organizations may find that
they have unique services that they can provide, and IT staff will be needed to
create those services. Nevertheless, there will be fewer jobs involving custom
development.

With the eventual standardization of services, it will become easier to replace one
service with another. (This would be similar to replacing one AV receiver component
with another that has more capabilities.) This should be a clarion call to service
providers to protect the quality of their product. There will be fewer reasons for
organizations to put up with inferior software if it is easy to swap in a service from
a different vendor.

Summary

This chapter provided an approach to getting started with Web services with three
basic experiments meant to create a familiarity with using Web services. Following
that, the chapter used the story about C. R.’s business trip to address more advanced
uses of Web services. A vision of what Web services might mean for the future was
provided at the end.

Although it might have looked like it, this chapter did not address SOA.
Chapter 12 provides suggestions for getting started with SOAs.

This page is intentionally left blank

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00012-9

145

A major advantage of using a service-oriented architecture (SOA) with Web services
is that it fits in with the general chaos of business. There are many forces contribut-
ing to this chaos: organizations are acquired and divested, organizations restructure
themselves, new products need to be sold, competition forces quick responses, and,
of course, there’s more and it is ever changing.

Contents
Establish a Service-Oriented Architecture	 146
	 Design Considerations	 146
	 Staffing Issues	 148
	 Likely Change Issues	 149
What If Things Are Not Going as Planned?	 150
	 The Data Warehouse Was Growing Much Faster Than Expected	 150
	 The Response Time of the Services Provided by an Internal System
	 Was Inadequate	 151
	 Putting It All Together	 157
Services and Service-Oriented Architectures	 157
SOA Governance	 161
Summary	 162

Getting Started
with Service-
Oriented
Architectures

C
hapter 12

146   Getting Started with Service-Oriented Architectures

Historically, it has been a struggle for IT groups to respond to this business chaos.
An SOA provides a way to be more nimble in the responses. If an SOA is designed
properly, it will approach the type of plug-compatibility that I have been alluding to
with the audio-video (AV) examples sprinkled throughout this book.

Nevertheless, just using Web services for making connections does not guarantee
your organization will have a functional SOA. The trick is in how you design your
SOA.

This chapter provides design concepts and considerations along with staffing and
change issues to take into account when establishing an SOA. It illustrates how a
properly designed service interface can make it easier for an organization to respond
to the chaos of modern business. At the end, there is a discussion of SOA governance.

Establish a Service-Oriented Architecture

I have waited until this point before suggesting that you establish an architecture,
because it is important to have the experiences experimenting with Web services
described in Chapter 11. An architecture based on experience is much more likely to
succeed than one that is based on just reading a book or thinking about the technology.

Anchor an SOA in what your organization really needs and what your people are
capable of accomplishing. Recall from Chapter 9 that smaller projects are more
focused and are more likely to succeed. Large projects are likely to fail. Since 1994,
the Standish Group has conducted studies on IT development projects, compiling the
results in the Chaos Reports. In 2005, Watts S. Humphrey of the Software Engineering
Institute looked at the Standish Group’s data by project size. His research showed
that half of the smaller projects succeeded, whereas none of the largest projects did.1

You may want to go back to Chapter 10 to review the approach to developing an
SOA as a series of small incremental projects.

Design Considerations

1.	 Adopt industry standards. These standards include Web services and indus-
try-standard semantic vocabularies. (The industry group specifying the standard
semantic vocabularies could also be identified. See page 179 for a sample of
vocabularies by industry.)

1 Watts S. Humphrey “Why Big Software Projects Fail: The 12 Key Questions.” CrossTalk: The Journal of
Defense Software Engineering, March 2005.

Establish a Service-Oriented Architecture   147

2.	 Use commercial off-the-shelf software as much as possible. The software must
provide Web services adapters.

3.	 Encapsulate legacy applications with interfaces that meet industry stan-
dards. Web services must be used for the interface.

4.	 Use a data-independent layer between applications and data to hide
the structure of the underlying data. All interaction must be through Web
services.

5.	 Design services for reusability. Chapter 10 suggests one technique for determin-
ing the right “size” or granularity of a service. Use some type of methodology to
improve the chances that the services are reusable.

6.	 Every service must be able to receive messages multiple times with no
adverse effects. For example, assume a service can receive updates to customer
data. That service must be able to receive the same update more than once with-
out affecting the data. The reason for this is that the sending service may, for vari-
ous reasons, send data multiple times. This can happen when a system comes up
after being down for a period of time. It may have some type of checkpoint that is
taken after some multiple of messages go out. If the system goes down between
checkpoints, some messages may need to be sent again to be sure they went out.
It can also happen through mistakes in programming, multiple data requests, or
simply unforeseen actions.

7.	 Track and manage the use of services. If people see services as useful, they
are going to be used—perhaps in new and unusual ways (which often may be a
good thing). It is important to consider tracking the use of services. Amazon Web
Services (AWS) provides a model to consider:

	 n	� Unique token. Each developer has a unique token in AWS that is used to track
usage, payments, and so on.

	 n	� Versioning. The incoming messages to AWS specify the version of the mes-
saging and XML vocabulary to use. This allows changing the messaging in
the AWS without requiring all users to also make changes. Only users inter-
ested in the change are affected.

	 n	� Response groups. The incoming messages to AWS specify the desired
response groups. Each response group contains certain data. This is an option
to consider since, like the decomposition of services shown in Figure 10.4,
it is possible to have services returning multiple types of responses. This
could be achieved using response groups. This is extra work but with ben-
efits. It provides increased flexibility for enhancing service responses and
allows for tracking usage.

8.	 High-volume, high-speed messages should be sent within a service and low-
volume, low-speed messages should be sent between services. This is one of
those “relative” design considerations. Web services, no matter what, are going
to run significantly slower than communication within most internal systems.

148   Getting Started with Service-Oriented Architectures

Try to keep the high-volume, high-speed messages within a service. Figure 12.1
illustrates keeping high-volume, high-speed messages within an internal system
that is also being used as a service.

9.	 Balance the conflict between indeterminate and operational access. This con-
flict is often quite apparent when using an existing system as a service. That exist-
ing system was not necessarily designed for indeterminate or erratic requests.
Having to deal with those requests with the service responsiveness expected is
sometimes difficult to do with an existing system. Figure 12.2 illustrates this
issue. (This issue is explored more later in this chapter.)

Staffing Issues

By now you should have an effective team of seven or fewer people who are very capable of
taking on short-term projects. Your methodology should also be well established.

Existing system as a service

Adapter

Lower-volume,

lower-speed

messages

between
services

High-volume,

high-speed

messages

internal to a

service

Existing
application

Existing
application

Internal
system

Customer &
other data

ESB

Data
warehouse

Adapter

BI/Analytics

Adapter

Customer
data

Figure 12.1  Keep high-volume, high-speed messages within a service.

Establish a Service-Oriented Architecture   149

Likely Change Issues

The most likely change issues you will encounter at this stage are:

n	 Feeling that jobs may be threatened. The you know what will really hit the fan
at this stage. For many organizations, it will be obvious that the size of the IT
staff will begin to decrease and jobs might genuinely be threatened. Be prepared
to communicate openly about this as soon as possible so that people have time to
make decisions.

Existing system as a service

Adapter Existing
application

Existing
application

Internal
system

Customer &
other data

ESB

Data
warehouse

Adapter

BI/Analytics

Adapter

Customer
data

Controlled access

Operational data

Operational access

Responsive to
operational needs

High-speed
Indeterminate Access

Responsive to
erratic requests

Figure 12.2  Conflict between indeterminate and operational access.

150   Getting Started with Service-Oriented Architectures

n	 Not invented here. You are likely to be considering external services at this stage.
It is very human to resist this. Be sure to get this resistance out in the open and
really listen to concerns to make sure any legitimate concerns are addressed.

n	 Our problems are special. This relates to the feeling that jobs may be threat-
ened. Be sure to get these concerns out in the open to see if there is any real con-
cern that the special issues are being overlooked. Chances are very likely that the
problems are not special. Be prepared to communicate this effectively. Be sure
to keep management informed as the word spreads through the grapevine that
“special issues” are being overlooked.

What If Things Are Not Going as Planned?

The example development illustrated in Figure 11.7 addressed the design-related
restraining forces for adopting an SOA. Those design issues appeared in the force
field analysis illustrated by Figure 6.9 and are as follows:

n	 Deciding what data to route
n	 Delays getting data updates distributed
n	 Deciding what data to warehouse
n	 Delays in getting data to the warehouse
n	 Redundancy of data
n	 Data quality issues
n	 Effects on operational systems for up-to-the-moment data requests
n	 Identification and design of services

But what if things are not going as planned? I’ll go back to the story about C. R.’s
organization to illustrate problems and possible responses.

Figure 12.3 represents, at one point, the systems supporting the SOA for C. R.’s
organization (Figure 11.7 is essentially a subset of this figure). To add more detail to
the story, let’s say two issues appeared at this point in the use of the SOA:

1.	 The data warehouse was growing much faster than expected.
2.	 The response time of the services provided by an internal system was inadequate

and the indeterminate access requests were adversely impacting the operational
system. This is the issue illustrated by Figure 12.2.

The Data Warehouse Was Growing Much Faster Than Expected

The response to the first issue was described in the section on adopting a platform as a
service (PaaS) starting on page 74. This described how C. R.’s organization moved to
a virtual private cloud to provide for a big data store, and is illustrated by Figure 12.4.

What If Things Are Not Going as Planned?   151

The PaaS includes tools to help develop, manage, and analyze the data in big data
stores. It provides an ESB within the virtual private cloud that is optimized for the big
data store and the business intelligence (BI)/analytics software.

The Internet is represented by the horizontal shaded area. Web services are shown
as a black line within the shaded area. This represents that Web services protocols
(SOAP, REST, JSON, etc.) are a subset of the protocols that can be used on the
Internet.

Note the adapters aligned with the big data and BI/analytics in the virtual private
cloud. They are needed because those services use a somewhat different semantic
vocabulary than the one used by C. R.’s organization.

The Response Time of the Services Provided by an Internal System
Was Inadequate

The second issue can be problematic. C. R.’s organization, like many others, was
not in a position to change the internal system that was being adversely affected
when used as a service. One solution is a middle-tier architecture that uses persistent
caching.

Data
warehouse

Adapter

BI/Analytics

Adapter

ORB services

Adapter

ESB

system
Internal

system
Internal

system
Internal

Internal
system A

Customer &
other data

Internal
system Z

Existing
application

Existing
application

Existing
application

Existing
application

Adapter

Adapter

Many existing operational systems

Customer &
other data

Figure 12.3  Systems supporting the SOA of C. R.’s organization.

152   Getting Started with Service-Oriented Architectures

ORB services

Adapter

system
Internal

system
Internal

system
Internal

Internal
system A

Customer &
other data

Internal
system Z

Existing
application

Existing
application

Existing
application

Existing
application

Adapter

Adapter

Many existing operational systems

ESB

Big data
store

Adapter

BI/Analytics

Adapter

Virtual Private Cloud

INTERNET
WEB SERVICES

ESB

Customer &
other data

Figure 12.4  Using a PaaS cloud provider for a big data store and BI/analytics.

What If Things Are Not Going as Planned?   153

Basics of a Middle-Tier Architecture

A middle-tier architecture is one way to leverage the use of existing systems and
databases. The middle tier changes where integration occurs. Instead of directly inte-
grating existing systems and databases, a new layer is developed so that the integra-
tion occurs in the middle tier. Moving integration to the middle tier is the solution
used by C. R.’s organization to address the conflict between indeterminate and opera-
tional access.

Figure 12.5 illustrates the basics of a middle-tier architecture2 that uses an appli-
cation server and a middle-tier database. The middle tier is above internal systems.
One of the internal systems that we have covered so far is at the bottom of the figure.
It is also used as a service.

Note that the adapter is at the bottom of the middle tier, above the internal system
as it was in Figure 12.4. Since this application server is presumably new develop-
ment, it can use the same semantic vocabulary and Web services message format as
the ESB. An adapter is not needed for the application server.

Persistence in the Middle Tier

It is possible to add persistence to the middle tier. Adding persistence to the middle
tier makes sense in situations that either have too much data to keep in the applica-
tion server cache or situations where you need the protection of persistence to make
sure no data would be lost before it can be written to the internal system. It can also
be a way to boost performance of services provided by an application server when
it needs to access data. Middle-tier persistence, however, will require additional
development.

A persistent cache adds capabilities to the in-memory cache. These include:

n	 Expanded caching
n	 Protected caching
n	 Caching performance gain

2 There are various terms for the tiers in systems architecture. For this discussion, middle tier is used
because it is in the middle between user systems and the internal system.

This section goes into some technical detail. The purpose is to show that the systems
underlying a service can go through significant changes, and yet the services themselves
are affected very little.

154   Getting Started with Service-Oriented Architectures

The examples assume that a database will be used in the middle tier to provide the
persistent cache. A database manager ensures that all transactions will be recorded
properly and has recovery and backup capabilities, if needed.

Expanded Caching

There are several ways that a cache could be populated:

1.	 On an as-needed basis. An instance moves into the cache only when a program
requests to read the values of the instance.

2.	 Fully populated at start time. All instances needed in the cache are populated
when the system starts up.

3.	 A combination of the first two. An example is populating the cache with the
most likely instances that are needed and then moving additional instances into
the cache when a program requests to read the values of the instances.

Existing system as a service

Adapter

Existing
application

Existing
application

Internal
system A

Customer &
other data

ESB

Controlled access
Operational data

Operational access

Responsive to
operational needs

Application
server

Cache

Middle-tier
database

Middle tier

ORB services

Adapter

system
Internal

system
Internal

system
Internal

Figure 12.5  Middle-tier architecture.

What If Things Are Not Going as Planned?   155

In any of these cases, the cache size simply could be too large to efficiently keep
in memory. A middle-tier database could act as an expanded cache to offload some
of the data cached in memory.

Using a middle-tier database as an expanded cache adds options when the underly-
ing internal system is updated. The updates could occur as they happen or at intervals,
depending on the needs of the organization. For example, one option would be to pop-
ulate the middle-tier database from the internal system at the beginning of a business
day. All updates could be kept in the middle-tier database. These updates could then
be written to the internal system at the end of the day or at intervals during the day.

Protected Caching

If all middle-tier cache updates are written to a middle-tier database, then the cached
updates are not lost if the application server should fail. They can be recovered from
the middle-tier database when the application server is restored. This, of course,
would not be necessary if updates to the internal system are made every time an
update occurs. That, however, can create a performance hit to the middle tier, as will
be discussed in the next section.

Caching Performance Gain

If the middle-tier database uses the same data model as the middle-tier cache, there
is a good chance that performance will be significantly better than if updates were
written to the internal system as they happened.

This performance gain is possible assuming:

n	 The internal system uses a data structure that is different from what is needed for
the service. Chances are that this is true if the internal system has been around for
a while.

n	 The application server uses a cache that matches the needs of the object program
in the application server. This cache could use either an object, XML, or other
NoSQL data structure.

n	 The middle-tier database uses the same data model as the cache.

Given these assumptions, the time it takes to write an update to the internal
system will most likely take longer than writing to the middle-tier database. As the
complexity of the model used by the object program in the application server
increases, the difference in the time it takes to write the update to the middle-tier
database versus the internal system increases. This is because the mapping com-
plexity also increases between the data model in the cache and the model in the
internal system. The mapping simply takes time and costs performance.3

3 More on mapping issues can be found at http://www.service-architecture.com/object-relational-
mapping/articles/mapping_layer.html.

http://www.service-architecture.com/object-relational-mapping/articles/mapping_layer.html
http://www.service-architecture.com/object-relational-mapping/articles/mapping_layer.html

156   Getting Started with Service-Oriented Architectures

As a result, an update to a middle-tier database can be significantly faster and allow
processing to resume much sooner than if the update was to the internal system
directly.4 Figure 12.6 shows the sequence of this processing.

Middle-Tier Databases

There are many database options available for middle-tier persistence, because
middle-tier databases essentially store temporary data. This is in contrast to internal

4 IBM published a benchmark that showed significant performance gains with a middle-tier database between
the WebSphere application server and DB2. See http://www.service-architecture.com/application-servers/
articles/benchmark_using_a_transaction_accelerator.html. The full benchmark paper is available from a
link on that page.

Internal
system

Customer &
other data

Application
server

Cache

Middle-tier
database

Chances are that the
data model of the

cache will not match
that of the internal

database, making the
writing of data to the

internal database
slower than to a

middle-tier database

If the data model of
the cache is the
same as the data
model in the middle-
tier database, the
writing of data is fast

1 An instance in cache is updated

2
The instance is committed to
the middle-tier database

3
Once the instance is commited to the
middle-tier database, processing may
continue in the application server

4
At some later time, the instance is
committed to the internal database

Adapter

Figure 12.6  Using a persistent cache in the middle tier.

http://www.service-architecture.com/application-servers/articles/benchmark_using_a_transaction_accelerator.html
http://www.service-architecture.com/application-servers/articles/benchmark_using_a_transaction_accelerator.html

Services and Service-Oriented Architectures   157

system databases that are often seen as databases of record, which are expected to
last “forever.” When you are considering a database product for an internal system,
it is reasonable to choose a database management product from a well-known, estab-
lished vendor.

In contrast, middle-tier databases—because they are temporary—open up the
possibilities of using technologies that might significantly improve performance and
reduce development as well as maintenance costs.

There are many issues to consider in selecting a middle-tier database. A dis-
cussion of those issues goes beyond the scope of this book. More information on
middle-tier persistence can be found at http://www.service-architecture.com/object-
oriented-databases/articles/middle_tier_architecture.html.

Putting It All Together

Figure 12.7 shows the systems supporting the SOA for C. R.’s organization after
addressing the two issues that appeared after developing the enterprise data ware-
house (EDW) and using an internal system as a service. The customer relationship
management (CRM) from a software as a service (SaaS) cloud provider was also
added for completeness.

Services and Service-Oriented Architectures

In Chapter 3, a service was described as software and hardware—and that one or more
services support or automate a business function. Much of this book has focused on
the software and hardware systems that are needed to support services. Let’s now
focus on services. Chapter 10 had a generated decomposition of services illustrated
in Figure 10.4. A portion from the lower right corner of that services decomposition
is shown in Figure 12.8.

Figure 12.8 represents two low-level data services. For discussion’s sake, let’s say
these two services were part of the data services for the prior discussion of the two
issues facing C. R.’s organization. The Get Customers service could relate to the data
warehouse that was moved to a big data store in a PaaS cloud provider, and the Get
Invoice Items could relate to the middle-tier architecture used to relieve an internal
system that was adversely affected by indeterminate access because it was also used
as a service.

Something had to change related to these services when the underlying systems
were changed. The adapters may have needed to be changed or perhaps some code in
these services needed to be changed.

Note that before these solutions were implemented, C. R.’s organization had
implemented services for the data warehouse and the internal system. The important
point is that only the code in low-level data services or other code below the low-level

http://www.service-architecture.com/object-oriented-databases/articles/middle_tier_architecture.html
http://www.service-architecture.com/object-oriented-databases/articles/middle_tier_architecture.html

158   Getting Started with Service-Oriented Architectures

data services needed changing when the changes to the systems were made. The rest
of the services remained unchanged. Presumably, all that was noticed is that the ser-
vices related to the upgraded systems provided better performance. This is one way

ORB services

Adapter

system
Internal

system
Internal

system
Internal

Internal
system Z

Existing
application

Existing
application

Adapter

Many existing operational systems

Customer &
other data

ESB

Existing
application

Existing
application

Internal
system A

Customer &
other data

Big data
store

Adapter

BI/Analytics

Adapter

CRM

Virtual Private Cloud Public Cloud

Adapter

INTERNET
WEB SERVICES

ESB

Adapter

Application
server

Cache

Middle-tier
database

Figure 12.7  Systems used by C. R.’s organization that include a PaaS cloud provider,
SaaS cloud provider, and middle-tier persistence.

Services and Service-Oriented Architectures   159

C. R.’s organization was able to easily respond to what could be seen as the chaos of
business by concentrating work in specific areas, knowing that the structure of the
services will keep the system changes isolated.

The structure of the services is what consumers of those services see. They do not
see the underlying systems. The design and management of the structure of services
is important. Figure 12.9 shows the generated decomposition of services from
Figure 10.4. To help think about the structure of the services, they are divided into
two layers: business services and data services.5 The business services layer supports
or automates the business functions. The data services layer interacts with the soft-
ware and hardware systems to access and update data stored in those systems.

Since Figure 12.9 is actually a data flow diagram from the tool used in Chapter 10,
it shows only the data flows and not the control flows (requests). Figure 12.10 gener-
alizes Figure 12.9 and adds arrows that represent commands or requests. At the bot-
tom are internal interface services. These could, for example, be the interface for the
data services layer mentioned earlier. At the top are external interface services that
could be the interface services for the business services layer. These are the interfaces
used by many other services, systems, applications, and so on. As will be discussed
in the next section on governance, it is important to control or minimize changes to
the Web services/messaging that connects these external services.

5 Other variants of the number and names of service layers are used. Nearly all models of service layers
include a data service layer.

Figure 12.8  Two data services.

160   Getting Started with Service-Oriented Architectures

There could, however, be many services at each layer. So it makes sense to clas-
sify services with more detail than layers. Figure 12.11 shows services related to
Figure 12.7 organized into collections of services. The circles within the rectangles
represent services and each rectangle represents a collection of services.

Notice that no hardware or systems appear in Figure 12.11. Likewise, the services
appear the same whether or not they relate to a cloud provider or an internal system.

Internal interface
services

External interface
services

Control/minimize changes

Figure 12.10  Interfaces of services in an SOA.

Data
services
layer

Business
services
layer

Figure 12.9  Example layers of an SOA.

SOA Governance   161

If you could enter Figure 12.7 and stand inside the enterprise service bus (ESB),
you would see a bunch of services. One way to make sense of those services is to
organize them into collections as shown in Figure 12.11.

While you were inside the ESB, you would see that all the services appear to use
the same semantic vocabulary and message protocol (SOAP, REST, JSON, etc.).
This is why it makes sense to establish a semantic vocabulary as early as possible
and to actively maintain it as described in the incremental SOA analysis discussed in
Chapter 10 and illustrated in Figure 10.5.

SOA Governance

As you can well imagine, there will be many services in an SOA. Managing those
services is an important part of SOA governance. This includes:

n	 Providing a means to identify services for reuse
n	 Managing access to services by various entities/services/users
n	 Monitoring usage of services by various entities/services/users
n	 Analyzing the impact of proposed changes to services
n	 Adhering to messaging standards including appropriate industry-wide standards
n	 Adhering to semantic vocabularies including appropriate industry-wide semantic

vocabularies

CRM

Big data
store

ORB
services

Internal
system A

BI/Analytics

Internal
system Z

... Many existing
operational systems

Figure 12.11  Collections of services in an SOA.

162   Getting Started with Service-Oriented Architectures

n	 Monitoring the performance and availability of services and the underlying sys-
tems and hardware supporting services

n	 Tracking where services run in the supporting systems and hardware

I’m going to dwell a bit on the last bullet. Services are code. They can be written
in any language. They can run anywhere code can run. Often, this is an application
server, but that is not a requirement. Part of the design process is to determine the
best way to implement a service and part of governance is keeping track of where the
services run in the supporting systems and hardware.

Chapter 3 mentioned using a service repository for governance. Details such as
tokens mentioned on page 147 can be used for managing access and monitoring
usage of services. There are products on the market to aid governance that have fea-
tures such as these. You should decide what tools you will use for governance early
since they will impact the development of services. You will need to take into account
such features as tokens (or whatever the products use).

Your organization may also add other areas for governance, such as government
regulations, laws, internal architectural principles, and so on.

Summary

This chapter provided design concepts and considerations along with staffing and
change issues to take into account when establishing a service-oriented architecture.
Using big data in a private cloud and a middle-tier architecture with an internal sys-
tem, this chapter illustrated how properly designed service interfaces can make it
easier for an organization to respond to the chaos of modern business.

It is possible to have an SOA without cloud computing. But with the way tech-
nology is moving, it is increasingly likely that most SOAs will use cloud computing.
Chapter 13 provides suggestions for getting started with cloud computing.

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00013-0

163

Contents
Expand Your Internal SOA to Include External Services	 164
	 Staffing Issues	 164
	 Likely Change Issues	 164
Governance Considerations	 165
	 Legal Issues	 165
	 Business Issues	 165
	 Technical Issues	 165
Data Center Considerations	 166
	 Availability Issues	 166
	 Disaster Recovery Issues	 167
Examples of Technical Issues Related to Availability	 167
	 Failover Options for Messaging and Databases	 167
	 Database Availability Options	 168
	 Replication Options for Messaging and Databases	 169

Getting Started
with Cloud
Computing

C
hapter 13

164   Getting Started with Cloud Computing

Chapter 12 discussed the importance of service-oriented architecture (SOA) governance
given the likely expansion of services within an organization. That expansion pales when
you consider the growing number external services in the cloud that are available to any
given organization. If you are going to include external services in your SOA, you need
to establish a way to evaluate those services and the systems and hardware that support
those services. A data center provides the systems and hardware. This chapter provides
an overview of how to evaluate external services and data centers for cloud computing.

Expand Your Internal SOA to Include External Services

At this point, you will have the choice of weaving together services from other
organizations with services your organization uniquely provides. This is where you
could, for example, integrate an external customer relationship management (CRM)
service, much like what was described in the initial story about C. R.’s business trip.

Staffing Issues

If you have been experimenting with Web services and incrementally adding new
services, you may very well be sailing along. You might have several teams involved
with weaving together services. The team members’ skills position you to be ready
to change things quickly should there be a business need for changing some aspect
of your SOA in a hurry.

Likely Change Issues

The most likely change issues you will encounter at this point are:

n	 Not invented here—As time goes on, more and more external services will be
available that could replace internal custom-built services. Be prepared to con-
tinue to address this resistance through proper communication of the advantages
of these services to your organization.

n	 Our problems are special—This change issue is related to the previous one.
It is difficult for many people to realize that specific problems are not special.
The opportunity lies in weaving together “not-so-special” services into a special
architecture for your organization.

Cloud Brokers	 170
Should You Be Your Own Cloud Provider?	 170
Summary	 170

Governance Considerations   165

Governance Considerations

Part of governance related to cloud computing is deciding which cloud-based
services are critical and which are not. In C. R.’s business trip, services that support
his travel (e.g., airlines, trains, and so on) are critical. It is important to really care
about availability of those services. On the other hand, services that help C. R. with
life experiences (e.g., art, museums, menu translation, and so on) are less critical. If
one of those services happens to be unavailable it might be very frustrating, but it is
not critical to his business trip.

Of course, for some of the critical services you just need to assume they have
high availability. For example, your organization does not have much choice but to
assume that cloud-based services provided by an airline or car rental agency will be
highly available.

For those critical services where you have a choice of cloud providers, there are
issues in addition to those discussed with SOA governance that started on page 161.
There are legal, business, and technical issues.

Legal Issues

You will need to work with a legal team on what should be in a contract with a cloud
provider. Your organization needs to retain the right to its data. You need to consider
legal jurisdiction and privacy laws in the location of the data center(s) and details
on what will occur at the beginning and end of the contract period. You also need
to consider including service standards, notification of changes in the data center,
liability for data breaches (e.g., hacking or employee theft of data), disaster recovery,
and remedies for when things go wrong.

Finally, you need to know if you have a legal requirement for your data to physically
stay within a certain jurisdiction. This will affect your choice of a cloud provider.

Business Issues

A business relationship with a cloud provider is just like any other business relationship.
You should have a thorough understanding of the provider’s reputation, financial sta-
bility, longevity, and management practices related to the running of the data center.

Technical Issues

It is important to understand the tools or dashboards available related to the cloud-
based service. Establish an agreement on change management for the services
provided. You need to understand the technical aspects of how the cloud provider

166   Getting Started with Cloud Computing

supports high availability. This includes how they provide for redundancy and
failover should the data center experience an incident such as a massive power failure
in the geographic area in which it is located. You need a thorough understanding of
the cloud provider’s security and how you can best protect your data in their system.

Data Center Considerations

It is important to realize the significant role the data center plays in cloud comput-
ing. Figure 13.1 illustrates some basic features for the data center. It is often a large
facility with rows upon rows of rack-mounted hardware running software that allows
for the provisioning of virtual machines/servers that make all the resources such as
storage appear as if locally attached.

The dynamic nature of provisioning gives rise to the terms scalability and elas-
ticity for the number of virtual machines/servers and the amount of allocated stor-
age. Of course, as shown in this figure, all this backs up what logically looks like a
collection of services, as illustrated by the circles representing a collection of CRM
services.

Depending on how you plan to use the services from a cloud provider, you need
to take into consideration issues related to availability, disaster recovery, business
stability, and legal arrangements.

Availability Issues

Failover is automatically switching to a backup or standby. This could be hardware
(virtual or physical) such as a server, network, or disk. It could be failover for soft-
ware such as an application server, messaging such as a router or enterprise ser-
vice bus (ESB), a database management system, or custom software for the service.
Failover could involve the entire data center so that a backup data center is available.

Storage appears
to be localVirtual machines/servers

Data Center

CRM... CRM

Figure 13.1  Data center with virtual machines/servers behind a collection of services.

Examples of Technical Issues Related to Availability   167

You should work with your technical team to create availability requirements neces-
sary for your organization. (I will provide more on availability later in this chapter.)

Disaster Recovery Issues

Analyze the disaster recovery plan for the data center. Some possibilities to consider
here are the geographic location, type of physical construction, physical security,
power sources, power backup, and virtual/software-based security. Again, work with
your technical team to develop what your organization might need for disaster recov-
ery. There are publications that go into the technical issues to consider that are related
to disaster recovery.

Examples of Technical Issues Related to Availability

Availability can be achieved in multiple ways. There is a lot to consider for avail-
ability. This section will give you a few examples of the technical issues to consider.
Again, you should work with your technical team members to create availability
requirements necessary for your organization

Failover Options for Messaging and Databases

As mentioned earlier, the process of a secondary machine taking over for a primary
machine is known as failover. Listed here are three types of failover that apply to
messaging (message routers or ESBs) and databases. The terminology for types of
failover can vary.

n	 Transparent copy—the second machine takes over without the knowledge of
the application.

n	 Transparent cluster—in a clustered environment, if one node goes down, the
remaining node(s) take over for the failed node without the knowledge of
the application.

n	 Application/service —the application/service needs to detect the loss of the mas-
ter and switch to the second machine.

The first two forms of failover are acceptable for an SOA, but the third form,
application/service, is not in most cases. It would require applications/services that
depend on a machine being available to detect the loss of the machine. This would
mean, for example, that messaging would need to detect that the primary machine for
a master database has failed and then route data to the secondary machine. Conversely,
the machine handling the master database would need to detect the loss of the primary

168   Getting Started with Cloud Computing

machine used for messaging and route data to the secondary machine. This detection
of machine loss among disparate components of an SOA is too intertwined.

Database Availability Options

Much like messaging, there are basic options for databases that need to be consid-
ered. These are shown in Figure 13.2.

A basic database management system is shown in the lower-left quadrant. As
with any database management system, it will protect all data that is successfully
updated even if the machine on which it is running should fail. Nevertheless, this
does not provide for a secondary machine to take over should the primary machine
fail. It also does not provide options for load leveling through using more than one
machine. Load leveling spreads activity or load across more than one machine.

The lower-right quadrant shows a database management system that uses replica-
tion. It provides for a secondary machine to take over should the primary machine
fail. The data is replicated, which means, depending on the type of replication, data
will be available on the secondary machine should it need to take over when the pri-
mary machine fails. (Replication options will be covered in the next section.)

The two upper quadrants each show a distributed database, which is one way to
load level access to the database. Databases can be distributed in the same location or

Each distributed site or node is replicatedDistributed database

Not highly available Highly available

Single database Single database replication

Database Database

Database

Database Database

Database

Figure 13.2  Availability options for database management systems.

Examples of Technical Issues Related to Availability   169

in separate geographical locations. It is really a design issue. Not every system needs
a distributed database, which can add complexity to a system. Nevertheless, there are
architectures that can benefit from distributed databases.

The upper-right quadrant shows a distributed database management system that
also uses database replication at each node in the distributed database. This is one
way to achieve both load leveling of database access and high availability through
database replication.

Much like messaging, if the availability of the data in a master database is criti-
cal to your organization, then you should consider database replication to make the
database highly available. (By the way, Figure 13.2 shows one replicated database
in the right quadrant. Many products allow more than one replicated database if that
should be needed for your architecture.)

Similarly, if the master database management system is not performing suffi-
ciently on access speed, then distributing the data among multiple machines is an
option for load leveling this access.

Replication Options for Messaging and Databases

Both messaging (message routers or ESBs) and databases could take advantage of
replicated data. Four types of data replication are listed here. The terminology for
types of replication can vary. For this reason, each term is also defined in the right
of Figure 13.2.

n	 Real time—replication occurs as part of a transaction.
n	 Store and forward—replication occurs on a periodic basis.
n	 Time based—replication occurs at a set time of day.
n	 Event based—replication occurs at a specific event.

The only type of replication that will guarantee that no data is lost at time of
failover is real-time replication. All the other forms can lose some data at failover
time in one way or another. Real-time replication, however, has a cost. It may double
the time it takes to update the stored data in either a messaging system or a database.
Nevertheless, if it is important to your architecture that no data be “lost” due to
failover, then real-time replication is the only way to go.

Other options concerning replication have to do with how the primary and sec-
ondary sites can be used. Some systems allow only updates on the primary site
(sometimes called master site). The secondary (or slave or replicated) site exists
only to receive the secondary update. Other systems allow data to be updated on
either the primary or secondary site. The first master-slave technique is simpler. The
second technique may open up architectural opportunities. A lot depends on your
organization’s needs to determine which would be more useful.

170   Getting Started with Cloud Computing

Cloud Brokers

Sometimes it can be helpful to employ a cloud broker to help you sort through your
options for cloud computing. Cloud brokers act more or less like mortgage brokers.
They evaluate your cloud computing needs and provide you with a choice of cloud
providers that best meet those needs. A cautionary note here is to ensure that you are
working with an independent cloud broker. When a cloud broker is affiliated with a
cloud provider, it raises doubt that you are getting choices that best meet your needs.

Should You Be Your Own Cloud Provider?

Your organization can be its own cloud provider, but you need to weigh the techni-
cal and business issues to take this on. As opposed to an external cloud provider
where you pay for resources as you use them, you will need to invest upfront in the
hardware and software for the data center. Of course, there can be legal or business
reasons that you would want to do this.

There are options that can make this technically easier, such as “cloud comput-
ing in a box,” which creates a fully configured data center for your organization.
Sometimes, it is possible to find a leasing option for such a “box” so that you can
minimize your upfront costs.

You need to consider issues of availability. For example, will you need software
that provides for replication and failover within you data center? Will you need to
maintain a second, replicated data center should your primary data center fail for
some reason?

In any case, you will need to invest in the people who maintain your data center
and keep it secure. What you can offer people in the way of technical challenge and
compensation will affect how well you can staff your data center. This is one area
where an external cloud provider might have an easier time maintaining the staff
necessary to properly maintain a cloud data center.

Summary

This chapter discussed the expanded role of governance related to cloud computing.
As part of that governance, it is important establish a way to evaluate cloud-based
services and the data centers that support those services. This chapter highlighted
issues of availability related to cloud computing. At the end, it presented issues to
consider if your organization wants to become a cloud provider.

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00014-2

171

Let’s revisit C. R.’s business trip described in Chapters 1 and 2 to summarize the Web
services, service-oriented architectures (SOAs), and cloud computing related to the
business trip. Page references appear within parentheses indicating where you can
find more information on the topic in this book.

Services for C. R.’s Business Trip

Chapter 2 provided an introduction to the technology used for C. R.’s business trip.
Figure 14.1 is a redrawing of Figure 2.1 from Chapter 2 to show the services and
interconnections used to plan and manage his trip.

Contents
Services for C. R.’s Business Trip	 171
The Future for C. R.’s Organization	 174
Summary	 175

Revisiting the
Business Trip
in the Not-Too-
Distant Future

C
hapter 14

172   Revisiting the Business Trip in the Not-Too-Distant Future

In all likelihood, there are probably many hundreds of services used in C. R.’s
business trip. There are also multiple SOAs assembled from the services. Figure 14.1
shows the collections of services (see page 160). The services are represented in the
figure as circles. The collections are represented by the rectangles around the circles.

IN
T

E
R

N
E

T

... Car rental

... C. R.’s
calendar

... Expenses

... Doc
scanning

... Airlines

... Big data
store

... VPA
component

Services

Public
Cloud

Virtual
Private
Cloud

W
E

B
 S

E
R

V
IC

E
S

C. R.

Smartphone

Apps

... BI/Analytics

E
SB

... Hotel

... DOT

... Hotel

... Hotel

... Travel

... Under-
ground

... Airports

... Métro

... Taxis

... Trains

... Language
translate

... Art

... Allergies

... Museums

... Food
Ingredients

... Spouse’s
VPA/Calendar

... Social network

... CRM

... Manager’s
VPA/Calendar

... Meeting
summary

... Customers’
VPAs/Calendar

... ORB
services

... Internal
system A

... Internal
system Z

...E
SB

Calendar

Airlines

Car rental

Expenses

Doc scanning

Big data

VPA

C. R.’s
Organization

Internal
Services

Figure 14.1  Details of services and data interchange related to C. R.’s business trip.

Services for C. R.’s Business Trip   173

Notice how everything is connected using Web services (see page 19) within the
Internet. In Figure 14.1, the Internet is represented by the vertical shaded area. Web
services are shown as a black line within the shaded area. This represents that Web
services messaging protocols (SOAP, REST, JSON, etc.) are a subset of all protocols
that can be used on the Internet.

There are two enterprise service buses (ESBs) in the figure (see page 62). One is
a specialized ESB for the services available related to the big data store and the busi-
ness information (BI)/analytics in a virtual private cloud. In addition to facilitating
the message passing within the virtual private cloud, the ESB also acts as a gateway
to the Internet for the services in this particular virtual private cloud (see page 42).

The second ESB in the figure is used by the internal services for C. R.’s organiza-
tion. Similar to the ESB in the virtual private cloud, this ESB is used for facilitating
the message passing among the internal services in C. R.’s organization. It also acts as
a gateway to the Internet. C. R’s organization defined a standard semantic vocabulary
(see page 29) to use with its ESB. This means that from within this ESB, all services
appear to use the same vocabulary and communication protocol, including external
services that are in the public cloud, through the use of adapters (see page 63).

Other collections of services in Figure 14.1 may use an ESB. You can use those
services without knowing whether or not the service uses an ESB. All you need to
know is the top-level service interface they present to the Internet via Web services.

The smartphone applications at the left in the figure represent only the applica-
tions that were mentioned in the business trip story. C. R. undoubtedly has more
applications than this on his smartphone.

What you don’t see in Figure 14.1 is any hardware. Presumably, everything in
the figure executes on virtual machines/servers in data centers (see page 166). The
services could be moved to different data centers and there would be no change in
the figure. Where the services actually execute is technically not important. There
can be legal and other nontechnical reasons for caring where data centers are located.

The data centers are what underlie cloud computing from cloud providers. One of
the features that distinguishes cloud computing from just a data center is that cloud
computing provides elasticity: “Capabilities can be elastically provisioned and
released, in some cases automatically, to scale rapidly outward and inward commen-
surate with demand. To the consumer, the capabilities available for provisioning
often appear to be unlimited and can be appropriated in any quantity at any time.”1

Nearly all the services in the figure are software as a service (SaaS) cloud pro-
viders (see page 42). For example, the customer relationship management (CRM)

1 Peter Mell and Timothy Grance, The NIST Definition of Cloud Computing: Recommendations of the
National Institute of Standards and Technology, NIST Special Publication 800-145, Sept. 2011, p. 2.

174   Revisiting the Business Trip in the Not-Too-Distant Future

service and the document scanning service used by C. R. on his business trip are
SaaS. These are the cloud provider’s own or custom software.

The big data store and the BI/analytics software were implemented using a plat-
form as a service (PaaS) virtual private cloud provider (see page 42). That software
was developed by C. R.’s organization using a cloud provider’s development tools
and a NoSQL database management system. C. R.’s organization realized that it
needed the capabilities of a cloud (elasticity of resources, high availability, etc.) for
storing and analyzing this data but did not want to build a data center to provide all
the features of a cloud-computing environment. This way, it only pays for resources
that it uses rather than investing upfront in the capabilities and a cloud and the ongo-
ing management costs.

C. R.’s organization retrofitted many of its internal systems to act as services and
use the internal ESB. Note that the internal systems are not in any type of cloud. They
are probably supported using a data center run by C. R.’s organization. But C. R.’s
organization did not see a reason to create a private cloud for its internal services.

The collections of services shown in this figure were used to build multiple SOAs.
C. R.’s organization has an SOA that includes the collections of the services at the
bottom in the figure. Its SOA mixes public and virtual private cloud computing with
the non-cloud computing of its internal data center. Many of the services shown may
also have their own SOAs. Among those that might include the airlines, car rental
agencies, and the local department of transportation (DOT). The VPA component
also undoubtedly has a sophisticated SOA.

Figure 14.1 allows for more connections than were shown in Figure 2.1 because
everything is connected using Web services. So, given the correct authorizations/
permissions, other capabilities could be constructed. For example, there could be
a new service created out of services from the airlines, car rental agencies, hotels,
museums, and art that would be a specialized travel service that creates custom travel
arrangements for people interested in specific types of art.

The Future for C. R.’s Organization

What is likely to happen at C. R.’s organization as the remaining existing systems
age? Will the organization take advantage of the services interface it has in place for
these systems and upgrade the hardware and software that is “under” that interface?
The other option his organization would have is to maintain that interface but move
more of the processing to the cloud. Will it move most of the processing to the cloud
and pay for resources as it uses them? A lot probably depends on the experience the
organization has with cloud computing and the ongoing development of standards
that could make the use of cloud computing more enticing.

The Future for C. R.’s Organization   175

Summary

This chapter tied much of the technology of Web services, service-oriented architec-
tures, and cloud computing back to the story of C. R.’s business trip in Chapters 1 and 2.
It provided an overview and summary for much of the material that is in this book.

This page is intentionally left blank

PA
RT V

Reference Guide

Part V provides a reference guide for the book. Chapter 15 lists the various
semantic vocabularies. Chapter 16 is a guide to terminology related to Web
services, service-oriented architectures, and cloud computing.

This page is intentionally left blank

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00015-4

179

Contents
Common Semantic Vocabularies	 180
	 Address XML	 181
	 Computing Environment XML	 181
	 Content Syndication XML	 182
	 Customer Information XML	 182
	 Electronic Data Interchange (EDI) XML	 183
	 Geospatial XML	 183
	 Human XML	 184
	 Localization XML	 184
	 Math XML	 184
	 Open Applications Group Integration Specification (OAGIS)	 185
	 Open Office XML	 185
	 Topic Maps XML	 185
	 Trade XML	 185
	 Translation XML	 186

Semantic
Vocabularies

C
hapter 15

180   Semantic Vocabularies

Every industry group has its own vocabulary for its activities. Various industry groups
have been developing formal semantic vocabularies to take advantage of the Web ser-
vices messaging protocols. Originally, many of these vocabularies were referred to
as XML vocabularies.

Common Semantic Vocabularies

This is a listing of semantic vocabularies that can be shared among multiple indus-
tries or disciplines. New vocabularies are continually being developed and some
vocabularies go away.

	 Universal Business Language (UBL)	 186
	 Universal Data Element Framework (UDEF)	 186
Specific Semantic Vocabularies	 186
	 Accounting XML	 187
	 Advertising XML	 187
	 Astronomy XML	 187
	 Building XML	 187
	 Chemistry XML	 188
	 Construction XML	 188
	 Education XML	 188
	 Finance XML	 188
	 Food XML	 189
	 Government XML	 189
	 Healthcare XML	 190
	 Human Resources (HR) XML	 190
	 Instruments XML	 190
	 Insurance XML	 191
	 Legal XML	 191
	 Manufacturing XML	 192
	 News XML	 192
	 Oil and Gas XML	 193
	 Photo XML	 193
	 Physics XML	 193
	 Publishing XML	 193
	 Real Estate XML	 194
	 Telecommunications XML	 194
	 Travel XML	 194

Common Semantic Vocabularies   181

Address XML

Address Data Interchange Specification (ADIS): XML specification for the
interchange of address data both domestically and internationally. It is based on stor-
ing the parts of an address, or address elements, and then combining them together
with intelligent editing to create output formats, or renditions, for particular mail
pieces. It includes data about the addresses, such as whether they are complete or
missing particular elements that affect address quality.

eXtensible Name Address Language (xNAL): XML specification for managing
name and address data regardless of country of origin. It consists of two parts: xNL,
eXtensible Name Language, to define the name components, and xAL, eXtensible
Address Language, to define the address components. xNL and xAL are part of the
OASIS Customer Information Quality (CIQ) family of specifications.

Mail.XML: XML specification for communication between industry members and
from industry to the final mail processing and delivery organization that delivers the
mail to the end consumer (e.g., USPS).

Computing Environment XML

Application Vulnerability Description Language (AVDL): An XML definition for
exchange of information relating to security vulnerabilities of applications exposed
to networks.

Intrusion Detection Message Exchange Format (IDMEF): Data formats and
exchange procedures for sharing information of interest to intrusion detection and
response systems and to management systems that may need to interact with them.

Web-Based Enterprise Management (WBEM) Initiative: A set of management
and Internet standard technologies developed to unify the management of enterprise
computing environments. WBEM provides the ability for the industry to deliver a
well-integrated set of standard-based management tools leveraging the emerging Web
technologies. The DMTF has developed a core set of standards that make up WBEM,
which includes a data model, the common information model (CIM) standard; an
encoding specification, xmlCIM Encoding Specification; and a transport mechanism,
CIM operations over HTTP. The CIM specification is the language and methodol-
ogy for describing management data. The CIM schema includes models for systems,
applications, networks (LAN), and devices. The CIM schema will enable applications
from different developers on different platforms to describe management data in a
standard format so that it can be shared among a variety of management applications.

182   Semantic Vocabularies

The xmlCIM Encoding Specification defines XML elements, written in document
type definition (DTD), which can be used to represent CIM classes and instances. The
CIM operations over HTTP specifications define a mapping of CIM operations onto
HTTP that allows implementations of CIM to interoperate in an open, standardized
manner and completes the technologies that support WBEM.

Web Services Distributed Management (WSDM): This specifies the Web services
architecture and technology to manage distributed resources. It includes a model of a
Web service as a manageable resource.

Web Application Security (WAS): This specification includes:

n	 A classification scheme for Web security vulnerabilities.
n	 A model to provide guidance for initial threat, impact, and therefore risk ratings.
n	 An XML schema to describe Web security conditions that can be used by both

assessment and protection tools.

Content Syndication XML

Information and Content Exchange (ICE): XML specification that, for content
providers, standardizes the process for setting up subscribers and for delivering and
managing subscriber content. For content subscribers, ICE standardizes the process
for setting up a subscription and for automated content retrieval. The ICE specifica-
tion provides businesses with an XML-based common language and architecture that
facilitates automatic exchanging, updating, supplying, and controlling of assets in a
trusted fashion without manual packaging or knowledge of remote website structures.

Real Simple Syndication (RSS): RSS is a dialect of XML for content syndication.
Some say the acronym also stands for “Rich Site Summary.”

Customer Information XML

eXtensible Customer Information Language (xCIL): Uses customer data such as
telephone numbers, email addresses, account numbers, credit card numbers, etc. to
uniquely identify a customer. This helps in achieving a single customer view, customer
relationship management (CRM) strategies, understanding a customer profile, etc. xCIL
is part of the OASIS Customer Information Quality (CIQ) family of specifications.

eXtensible Customer Relationships Language (xCRL): XML standard specifica-
tion to represent customer relationships in a standard way to help achieve interoper-
ability between different systems, processes, and platforms, and in building effective
single-customer views. xNAL and xCIL are referenced by xCRL.

Common Semantic Vocabularies   183

Electronic Data Interchange (EDI) XML

XML/EDI: XML specification to exchange different types of data (e.g., an invoice,
healthcare claim, or project status). It includes implementing EDI dictionaries and
online repositories to business language, rules, and objects.

Geospatial XML

City Geography Markup Language (CityGML): XML specification for the rep-
resentation, storage, and exchange of virtual three-dimensional (3D) city and land-
scape models. CityGML is implemented as an application schema of the Geography
Markup Language (see next). CityGML models both complex and geo-referenced
3D vector data along with the semantics associated with the data. CityGML is
based on a general-purpose information model in addition to geometry and appear-
ance information. For specific domain areas, CityGML also provides an extension
mechanism to enrich the data with identifiable features while preserving semantic
interoperability.

Geography Markup Language (GML): XML specification for expressing geo-
graphical features. GML serves as a modeling language for geographic systems
as well as an open interchange format for geographic transactions on the Internet.
A GML document allows users and developers to describe generic geographic data
sets that contain points, lines, and polygons. The developers of GML envision com-
munities working to define community-specific application schemas that are spe-
cialized extensions of GML. Using application schemas, users can refer to roads,
highways, and bridges instead of points, lines, and polygons. If everyone in a com-
munity agrees to use the same schemas, they can exchange data more easily.

OGC Web Services (OWS): XML specification to extend and “ruggedize” existing
and draft OpenGIS standards into a robust and complete interoperability framework
for implementing multivendor enterprise—and enterprise-to-enterprise—solutions
in government and business.

OpenGIS Location Services (OpenLS): XML specification to define access to the
core services and abstract data types (ADTs) that comprise the GeoMobility Server,
an open location services platform. Abstract data types are encoded in XML for loca-
tion services (XLS). XLS is defined as the method for encoding request/response
messages and associated abstract data types for the GeoMobility Server. The inter-
faces allow telecommunications companies, telematics service providers, traditional
GIS technology companies, and location-based services (LBSs) providers to imple-
ment interoperable LBS applications that access multiple content repositories and
service frameworks that work across many different wireless networks and devices.

184   Semantic Vocabularies

Human XML

HumanML: XML schema and Resource Description Framework (RDF) schema
specification containing sets of modules that frame and embed contextual human
characteristics, including physical, cultural, social, kinesic, psychological, and
intentional features within conveyed information.

Localization XML

XML Localization Interchange File Format (XLIFF): XLIFF is an extensible
specification for the interchange of localization information. The specification pro-
vides the ability to mark up and capture localizable data and interoperate with different
processes or phases without loss of information. The vocabularies are tool neutral and
support the localization-related aspects of internationalization and the entire localiza-
tion process. The vocabularies support common software and content data formats.

Math XML

MathML: XML specification for describing mathematical notation and capturing
both its structure and content. The goal of MathML is to enable mathematics to be
served, received, and processed on the Internet, just as HTML has enabled this func-
tionality for text.

OpenMath: XML specification for representing mathematical objects with their seman-
tics, allowing them to be exchanged between computer programs, stored in databases,
or published on the World Wide Web. There is a strong relationship to the MathML
recommendation from the World Wide Web Consortium (W3C) and a large overlap
between the two developer communities. MathML deals principally with the presenta-
tion of mathematical objects, while OpenMath is solely concerned with their semantic
meaning or content. While MathML does have some limited facilities for dealing with
content, it also allows semantic information encoded in OpenMath to be embedded
inside a MathML structure. Thus, the two specifications may be seen as complementary.

Open Mathematical Documents (OMDoc): XML specification for representing
the semantics and structure of various kinds of mathematical documents, including
articles, textbooks, interactive books, and courses. OMDoc is an extension of the
OpenMath and MathML standards, and in particular of the content part of MathML.

eXtensible Data Format (XDF): XML specification of common scientific data format
and general mathematical principles that can be used throughout the scientific disciplines.
It includes these key features: hierarchical data structures, any dimensional arrays merged
with coordinate information, high-dimensional tables merged with field information,

Common Semantic Vocabularies   185

variable resolution, easy wrapping of existing data, user-specified coordinate systems,
searchable ASCII metadata, and extensibility to new features/data formats.

Open Applications Group Integration Specification (OAGIS)

Open Applications Group Integration Specification (OAGIS): OAGIS defines a
common content model and common messages for communication between busi-
ness applications. This includes application-to-application (A2A) and business-to-
business (B2B) integration.

Open Office XML

Open Office XML: The OpenDocument Format (ODF) is an open XML-based docu-
ment file format for office applications to be used for documents containing text, spread-
sheets, charts, and graphical elements. It is intended to meet the following requirements:

n	 It must be suitable for office documents containing text, spreadsheets, charts, and
graphical documents.

n	 It must be compatible with the W3C eXtensible Markup Language (XML) v1.0
and W3C Namespaces in XML v1.0 specifications.

n	 It must retain high-level information suitable for editing the document.
n	 It must be friendly to transformations using XSLT or similar XML-based lan-

guages or tools.
n	 It should keep the document’s content and layout information separate such that

they can be processed independently of each other.
n	 It should “borrow” from similar, existing standards wherever possible and permitted.

Topic Maps XML

Topic Maps Published Subjects for Geography and Languages (GeoLang): GeoL-
ang advances the use of the XML Topic Maps specification (ISO/IEC 13250:2000) for
navigating information resources by defining published subjects for languages, countries,
and regions. Languages, countries, and regions are subjects that occur frequently across
a wide range of topic maps. To promote maximum reusability, interchangeability, and
mergability, standardized sets of published subjects are required to cover these domains.

Trade XML

Controlled Trade Markup Language (CTML): XML specification of unified
trade control vocabulary that supports an international collection of business docu-
ments (e.g, trade applications, cases, licenses, delivery verification certificates, etc.)
through the extension and expansion of an existing XML vocabulary.

186   Semantic Vocabularies

Translation XML

Translation Web Services: The intent is that any publisher of content to be trans-
lated should be able to automatically connect to and use the services of any transla-
tion vendor over the Internet without any previous direct communication between
the two.

Universal Business Language (UBL)

Universal Business Language (UBL): This is an important development in the use
of XML vocabularies. In any human language, the same word can mean different
things for different industries. Conversely, different words sometimes can mean the
same thing in different industries. The OASIS UBL Technical Committee’s charter is
to define a common XML business document library. UBL will provide a set of XML
building blocks and a framework that will enable trading partners to unambiguously
identify and exchange business documents in specific contexts. This is an effort to
unite efforts underway by organizations and standards groups around the world. The
OASIS UBL Technical Committee intends to enhance and harmonize overlapping
XML business libraries and similar technologies to advance consensus on an inter-
national standard.

Universal Data Element Framework (UDEF)

Universal Data Element Framework (UDEF): This is a cross-industry metadata
identification strategy designed to facilitate convergence and interoperability among
e-business and other standards. The objective of UDEF is to provide a means of real-
time identification for semantic equivalency as an attribute to data elements within
e-business document and integration formats. The supporters of UDEF hope that it
can be seen as the “Dewey Decimal System” across standards. UDEF can be seen as
only an attribute in the data element. There are no process, validation, or handling
requirements. The intent is to communicate in a standard and repeatable way the
exact concept that the data element represents. There is very little about context—
just enough to identify the data element exactly.

Specific Semantic Vocabularies

This is a listing of semantic vocabularies that are specific to a particular industry or
discipline. New vocabularies are continually being developed and some vocabularies
go away.

Specific Semantic Vocabularies   187

Accounting XML

Small and Medium-Sized Business XML (smbXML): XML specification for
describing business transactions. smbXML is specifically designed for the needs of
the small-to medium-sized business community.

Advertising XML

AdsML Framework: A set of XML specifications along with workflow and best
practices designed to implement e-commerce communications for the buying, sell-
ing, delivering, receiving, invoicing, and paying of advertisements. All of the stan-
dards in the framework share both an e-commerce philosophy and a common set of
design principles; they use common names and structures; and they support a com-
mon message choreography. The AdsML Framework aims to support all kinds of
advertising, in all media, and through all stages of the lifecycle of an advertisement.
Specifications for Publisher & Agency Communications Exchange XML (SPACE/
XML): XML specification for electronic business transactions related to:

n	 Space reservations
n	 Insertion orders
n	 Creative materials
n	 Job tickets
n	 Invoices

The standard was developed to get paid faster from a reduction in information
errors that cause billing discrepancies. Additionally, the goal was to create the speci-
fications for ad insertion orders to eliminate much of the confusion and misinforma-
tion that can result when insertion orders are sent by fax or mail. By establishing
this set of standards, any publication or agency could receive electronic business
information from any collaborative partner.

In 2005, IDEAlliance merged the SPACE specification into the AdsML Frame
work (see above).

Astronomy XML

Flexible Image Transport System Markup Language (FITSML): XML specifi-
cation for astronomical data, such as images, spectra, tables, and sky atlases.

Building XML

oBIX: The Open Building Information Exchange specification that will enable enter-
prise applications to communicate with mechanical and electrical systems in buildings.

188   Semantic Vocabularies

Chemistry XML

Chem eStandards: XML specification for data exchange developed specifically for
the buying, selling, and delivery of chemicals.

Chemical Markup Language (CML): XML specification covering macromolecu-
lar sequences to inorganic molecules and quantum chemistry.

Construction XML

Architecture Description Markup Language (ADML): XML specification
for architecture. ADML is based on ACME, an architecture description language.
ADML adds to ACME, a standardized representation of the ability to define links to
objects outside the architecture (e.g., rationale, designs, and components).

Education XML

Schools Interoperability Framework (SIF): An XML specification for data shar-
ing among schools, kindergarten through twelfth grade.

Finance XML

eXtensible Business Reporting Language (XBRL): XML specification that
describes financial information for public and private companies and other organiza-
tions. They have created XML taxonomies. Since financial reporting varies by coun-
try, the taxonomies vary by country.

Financial Information eXchange (FIX) Protocol: XML specification for the real-
time electronic exchange of securities transactions.

Financial Products Markup Language (FpML): XML specification for swaps,
derivatives, and structured financial products.

Interactive Financial Exchange (IFX): XML specification for electronic bill present-
ment and payment, business-to-business payments, business-to-business banking (e.g.,
balance and transaction reporting, remittance information), automated teller machine
communications, consumer-to-business payments, and consumer-to-business banking.

Market Data Definition Language (MDDL): XML specification to enable interchange
of data necessary to account for, analyze, and trade instruments of the world’s finan-
cial markets. MDDL seeks, through definition of common terms, to provide a standard

Specific Semantic Vocabularies   189

vocabulary so market data may be exchanged unambiguously between exchanges,
vendors, redistributors, and subscribers. MDDL is designed to facilitate delivery of all
data and to increase ease of processing for recipients of this market-based financial data.

Open Financial Exchange (OFX) XML Schema: XML specification for the elec-
tronic exchange of financial data between financial institutions, businesses, and
consumers via the Internet. It is designed to support a wide range of financial activi-
ties including consumer and small business banking, consumer and small business
bill payment, and investments transaction download, including stocks, bonds, and
mutual funds.

Research Information eXchange Markup Language (RIXML): XML specification
to tag any piece of research content in any form or media with enough detail for end users
to be able to quickly search, sort, and filter aggregated research.

Society for Worldwide Interbank Financial Telecommunication (SWIFT):
SWIFT Standards develops business standards to support transactions in the finan-
cial markets for payments, securities, treasury, and trade services. Their proprietary
MT messages are complemented by new XML-based (MX) messages, which enable
the transfer of richer data for more complex business transactions.

Food XML

Meat and Poultry XML (mpXML) Schema: XML specification for exchanging
business information among all segments and entities in the meat and poultry supply
and marketing chain.

Government XML

Election Markup Language (EML): XML specification for the structured inter-
change of data among hardware, software, and service providers who engage in
any aspect of providing election or voter services to public or private organizations.
The services performed for such elections include but are not limited to voter role/
membership maintenance (new voter registration, membership and dues collection,
change of address tracking, etc.), citizen/membership credentialing, redistricting,
requests for absentee/expatriate ballots, election calendaring, logistics management
(polling place management), election notification, ballot delivery and tabulation,
election results reporting, and demographics.

National Information Exchange Model (NIEM): This has been developed
through a partnership of the U.S. Department of Justice and the Department of

190   Semantic Vocabularies

Homeland Security. It is designed to develop, disseminate, and support enterprise-wide
information exchange standards and processes that enable jurisdictions to effectively
share critical information in emergency situations, as well as support the day-to-day
operations of agencies throughout the United States. NIEM builds on the Global
Justice XML Data Model (GJXDM).

Tax XML: This includes a vocabulary of terms and a repository of artifacts includ-
ing XML templates, documents exchanged for tax compliance, best practices, guide-
lines, and recommendations for practical implementation. The intent is a common
vocabulary that will allow participants to unambiguously identify the tax-related
information exchanged within a particular business context.

Healthcare XML

Clinical Data Interchange Standards Consortium (CDISC) Operational Data
Model (ODM): XML specification that is a vendor-neutral, platform-independent
format for interchange and archive of data collected in clinical trials. The model
represents study metadata, data, and administrative data associated with a clinical
trial. Only the information that needs to be shared among different software systems
during a trial or archived after a trial is included in the model.

Health Level 7 (HL7) Healthcare XML Format: XML specification for the
exchange of clinical data and information. The purpose of the exchange of clinical
data includes, but is not limited to, provision of clinical care, support of clinical and
administrative research, execution of automated transaction-oriented decision logic
(medical logic modules), support of outcomes research, support of clinical trials, and
support of data reporting to government and other authorized third parties.

Human Resources (HR) XML

HR-XML: XML specification designed to enable e-business and the automation of
human-resources related data exchanges.

Instruments XML

Instrument Markup Language (IML): XML specification that applies to virtu-
ally any kind of instrument that can be controlled by a computer. The approach to
instrument description and control apply to many domains, from medical instru-
ments (e.g., microscopes) to printing presses to machine assembly lines. The con-
cepts behind IML apply equally well to the description and control of instruments
in general.

Specific Semantic Vocabularies   191

Insurance XML

ACORD XML for Life Insurance: XML specification based on the ACORD Life
Data Model.

ACORD XML for Property and Casualty Insurance: XML specification that
addresses real-time requirement by defining property and casualty transactions that
include both request and response messages for personal lines, commercial lines,
specialty lines, surety, claims, and accounting transactions.

ACORD XML for Reinsurance and Large Commercial: XML specification that
addresses real-time requirements by defining business transactions that include both
request and response messages for Personal Lines, Commercial Lines, Specialty
Lines, Surety, Claims, and Accounting transactions.

Legal XML

Global Justice XML Data Model (Global JXDM): XML standards that enable the
justice and public safety community to effectively share information at all levels—
laying the foundation for local, state, and national justice interoperability.

LegalXML eContracts: Open XML standards for the markup of contract docu-
ments to enable the efficient creation, maintenance, management, exchange, and
publication of contract documents and contract terms.

LegalXML Electronic Court Filing: XML standards to create legal documents and
transmit legal documents from an attorney, party, or self-represented litigant to a court,
from a court to an attorney, from a party or self-represented litigant to another court,
and from an attorney or other user to another attorney or other user of legal documents.

LegalXML eNotary: An agreed set of technical requirements to govern self-proving
electronic legal information.

LegalXML Integrated Justice: XML standards for exchanging data among justice
system branches and agencies.

LegalXML Legal Transcripts: XML standards for the syntax to represent legal
transcript documents either as stand-alone structured content or as part of other legal
records.

LegalXML Legislative Documents: XML standards for the markup of legislative
documents and a system of simple citation capability for nonlegislative documents

192   Semantic Vocabularies

(e.g., newspaper articles). The primary goal is to allow the public to more easily
participate in the democratic process by creating a more open, accessible, easier to
parse, research, and reference legislative documents.

LegalXML Online Dispute Resolution (OdrXML): XML standard for the markup
of information and documents used in online dispute resolution systems. The pri-
mary goal is to allow the public to gain standardized access to justice through private
and government-sponsored dispute resolution systems.

LegalXML Subscriber Data Handover Interface (SDHI): XML standards for the
production of consistent Subscriber Data Handover Interface (SDHI) by telecommunica-
tions or Internet service providers, concerning a subscriber or communications identifier
(e.g., a telephone number) in response to an XML-structured request that includes, when
necessary, authorization from a judicial, public safety, or law enforcement authority.

Manufacturing XML

papiNet: The papiNet standard is a set of XML message standards for the paper and
forest industry. papiNet provides a common messaging interface so that companies
will no longer need to negotiate and agree on data definitions and formats with each
trading partner, a costly and arduous task. The papiNet standards are compatible with
other important open standards like ebXML.

Planning and Scheduling Language on XML Specification (PSLX): The PSLX
specification is a set of XML message standards for information about planning and
scheduling in manufacturing industries.

Production Planning and Scheduling (PPS): The specification of common object
models and corresponding XML schemas for production planning and scheduling
software, which can communicate with each other to establish collaborative planning
and scheduling on intra and/or inter-enterprises in manufacturing industries.

News XML

News Industry Text Format (NITF): XML specification for the content and
structure of news articles. NITF differs from NewsML in that there is no concept
in NewsML of a paragraph or subheadline. Also, there is no concept in NITF of a
sidebar or alternative translations of the same document. For text stories, the Interna-
tional Press Telecommunications Council recommends the NITF.

NewsML: XML specification for encoding for news that is intended to be used for
the creation, transfer, and delivery of news. NewsML is media independent and

Specific Semantic Vocabularies   193

allows equally for the representation of the evening TV news and a simple textual
story.

Publishing Requirements for Industry Standard Markup (PRISM): XML meta-
data vocabulary for managing, postprocessing, multipurposing, and aggregating pub-
lishing content for magazine and journal publishing.

SportsML: XML specification for the interchange of sports data.

Oil and Gas XML

Petroleium Industry Data Exchange (PIDX) standards: PIDX has developed and
published several XML specifications that support automation of various aspects of
the oil and gas supply chain. PIDX also developed a library of EDI X12 and FTP
standards that are used to support oil and gas business.

Photo XML

Common Picture eXchange environment (CPXe): XML specification that enables
the transmission of digital pictures and order and commerce information between
digital cameras, PCs, desktop software, Internet services, photo kiosks, digital mini-
labs, and photofinishers, regardless of the type of digital camera, device, PC brand,
operating system, or photofinishing equipment used by service providers. By incor-
porating CPXe, photographic device and software vendors give their customers easy
connection to a range of digital photography services.

Physics XML

Common Data Format Markup Language (CDFML): XML specification that is
a self-describing data abstraction for the storage and manipulation of multidimen-
sional data in a discipline-independent fashion.

Publishing XML

DocBook: XML/SGML vocabulary particularly well suited to books and papers
about computer hardware and software (though it is by no means limited to these
applications).

PROSE/XML: XML specification intended to be a standardized method for pub-
lishers to communicate job specifications to commercial printers. In as far as it
enforces certain formats for its data, and thereby standardizes the “look” of the data,
the PROSE/XML specification rarely defines its content data values. It is left up to

194   Semantic Vocabularies

the trading partners to determine the proper values for the content data transmitted
via the PROSE/XML specification.

Shipment and Logistics Specification (SnL): XML message specification for effi-
cient communication among those providing delivery instructions, transportation
planning, and distribution services for shipment of printed product. SnL is made up
of a family of related specifications. These specifications include shipment plans,
shipment notifications, print order messages, and goods receipt messages.

XML Book Industry Transaction Standards (XBITS): This is a working group
of IDEAlliance and a Book Industry Study Group (BISG)/ Book Industry Standards
and Communications (BISAC) publisher and manufacturer committee that is design-
ing standard XML transactions to facilitate bidirectional electronic data exchanges
between publishers, printers, paper mills, and component vendors.

Real Estate XML

Mortgage Industry Standards Maintenance Organization (MISMO): XML
specification for commercial mortgage origination data that provides both the con-
tent and format for borrowers and mortgage bankers to transmit data to lenders.

Real Estate Transaction Standard (RETS): XML specification for exchanging
real estate transaction information.

Telecommunications XML

Parlay X Web Services: The Parlay application programming interfaces (APIs) are
designed to enable creation of telephony applications as well as to “telecom-enable”
IT applications. The Parlay X Web services are intended to stimulate the develop-
ment of next-generation network applications by IT developers who are not neces-
sarily experts in telephony or telecommunications.

Telecommunications Interchange Markup (TIM): XML specification for describ-
ing the structure of telecommunications and other technical documents.

Travel XML

The OpenTravel Alliance (OTA): XML specification that serves as a common lan-
guage for travel-related terminology and a mechanism for promoting the exchange
of information across all travel industry segments.

Web Services Service-Oriented Arch. DOI:
Copyright © 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-398357-2.00016-6

195

Contents
Adapters	 198
Agents 	 198
Analytics	 198
Application Programming Interface (API)	 198
Application Server	 198
Atomic Service	 199
Big Data	 199
Business Intelligence (BI)	 199
Business Process Execution Language (BPEL)	 199
Business Process Modeling Notation (BPMN)	 200
Business Process Query Language (BPQL)	 200
Business Process Specification Schema (BPSS)	 200
Caching	 200
Cloud 	 200
Collaboration Protocol Profile/Agreement (CPP/A)	 201
Community Cloud	 201

Terminology

C
hapter 16

196   Terminology

Composite Service	 201
CORBA	 201
Data Cleansing	 201
Data Warehouse	 202
DCOM	 202
ebXML Registry	 202
Electronic Data Interchange (EDI)	 202
Enterprise Service Bus (ESB)	 203
eXtensible Access Control Markup Language (XACML)	 203
eXtensible rights Markup Language (XrML)	 203
eXtensible Stylesheets Language (XSL)	 203
Extract, Transform, and Load (ETL)	 203
Failover	 204
HTTP  	 204
Hybrid Cloud	 204
Infrastructure as a Service (IaaS)	 204
Internet Inter-ORB Protocol (IIOP)	 204
Java API for XML Parsing (JAXP)	 204
JSON  	 205
Load Leveling	 205
Loosely Coupled	 205
Mapping	 205
Mashups	 205
Message Router	 205
Meta-Object Facility (MOF)	 206
Middleware	 206
Model Driven Architecture (MDA)	 206
.NET  	 206
NoSQL Database Management System	 206
Object Request Broker (ORB)	 207
OMG Interface Definition Language (IDL)	 207
Partner Interface Process (PIP)	 207
Platform as a Service (PaaS)	 207
Public Cloud	 207
Registry	 208
REgular LAnguage Description for XML (RELAX)	 208
RELAX NG	 208
Replication	 208
Representational State Transfer (REST)	 208
Resource Description Framework (RDF)	 209
RosettaNet Implementation Framework (RNIF)	 209
Schematron	 209

﻿   197Terminology   197

This chapter serves as a quick reference to terminology related to Web services,
service-oriented architecture (SOA), or cloud computing. For those entries that have
related examples or more information in this book, there is a page reference to where
you can find the additional information.

Security Assertion Markup Language (SAML)	 209
Service	 209
Service-Oriented Architecture (SOA)	 209
Service Provisioning Markup Language (SPML)	 210
SOAP  	 210
Software as a Service (SaaS)	 210
Tree Regular Expressions for XML (TREX)	 210
Unified Modeling Language (UML)	 211
Uniform Resource Identifier (URI)	 211
Universal Data Model	 211
Universal Description, Discovery, and Integration (UDDI)	 211
Virtual Private Cloud	 211
Web Distributed Data Exchange (WDDX)	 212
Web Service Endpoint Definition (WSEL)	 212
Web Services Component Model	 212
Web Services Conversation Language (WSCL)	 212
Web Services Description Language (WSDL)	 212
Web Services Experience Language (WSXL)	 213
Web Services Flow Language (WSFL)	 213
Web Services for Interactive Applications (WSIA)	 213
Web Services for Report Portals (WSRP)	 213
Web Services User Interface (WSUI)	 214
Workflow	 214
XLANG	 214
XML Common Biometric Format (XCBF)	 214
XML Encryption	 214
XML Key Management Specification (XKMS)	 215
XML Linking Language (XLink)	 215
XML Namespaces	 215
XML Path Language (XPath)	 215
XML Pointer Language (XPointer)	 215
XML Protocol (XMLP)	 215
XML Schema	 216
XML Signature	 216
XSL Formatting Objects (XSL-FO)	 216
XSL Transformations (XSLT)	 216
XQuery	 216

198   Terminology

Since this is a dynamic area, new and revised technologies and concepts will be
occurring regularly. If you cannot find what you need here, go to http://www.service-
architecture.com/.

Adapters

Adapters allow Web services connections with internally developed systems or pack-
aged software, usually with an enterprise service bus (ESB). There can also be adapt-
ers between Web services and CORBA or DCOM. See page 63.

Agents

Agents are active entities that work with Web services. On a relatively simple side,
there are agents that can help us shop online. More sophisticated agents would be
able to perform negotiations, monitor the status of systems, or monitor changes in
the content of databases or other systems. These agents could communicate with
each other or with other systems internal or external to the organization using
Web services. The virtual personal assistant mentioned throughout this book is an
agent.

Analytics

Analytics is the discovery of patterns in data. See also Business Intelligence (BI).

Application Programming Interface (API)

API provides a means for software components to communicate with each other. In
the context of SOAs, these APIs use Web services, such as SOAP, REST, and JSON.
See page 39.

Application Server

An application server is a component-based product that resides in the middle tier of
an architecture. It provides middleware services for security and state maintenance,
along with data access and persistence. See page 153.

http://www.service-architecture.com/
http://www.service-architecture.com/

Business Process Execution Language (BPEL)   199

Atomic Service

An atomic service is a well-defined, self-contained function that does not depend on
the context or state of other services. See page 31.

Big Data

Big data is data that requires some capacity that is beyond that of a traditional database
system. There may be too much data (sometimes referred to as volume of data). The
data is created at a very high speed (sometimes referred to as velocity of data). The data
may be unstructured and there may be various types of structured and unstructured
data—audio, video, sensor feeds, unstructured text, and so on (sometimes referred to
as variety of data).

Business Intelligence (BI)

BI software is a broad area covering data mining, pattern finding, reporting, and
event detection among other possible functions. Often, BI is used with data ware-
houses and big data stores, but that is not a mandatory requirement.

Business Process Execution Language (BPEL)

BPEL defines a notation for specifying business process behavior based on Web
services. Business processes can be described in two ways:

n	 Executable business processes model actual behavior of a participant in a busi-
ness interaction.

n	 Business protocols, in contrast, use process descriptions that specify the mutually
visible message exchange behavior of each of the parties involved in the protocol
without revealing their internal behavior. The process descriptions for business
protocols are called abstract processes.

BPEL is used to model the behavior of both executable and abstract processes.
The scope includes:

n	 Sequencing of process activities, especially Web service interactions
n	 Correlation of messages and process instances
n	 Recovery behavior in case of failures and exceptional conditions
n	 Bilateral Web service-based relationships between process roles
n	 Business Process Execution Language for Web Services (BPEL4WS)

200   Terminology

Business Process Modeling Notation (BPMN)

The BPMN specification provides a graphical notation for expressing business pro-
cesses in a business process diagram (BPD). The BPMN specification also provides
a binding between the notation’s graphical elements and the constructs of block-
structured process execution languages, including BPML and BPEL.

Business Process Query Language (BPQL)

BPQL is a management interface to a business process management infrastructure
that includes a process execution facility (process server) and a process deployment
facility (process repository).

Business Process Specification Schema (BPSS)

BPSS is a standard framework by which business systems may be configured to
support execution of business collaborations consisting of business transactions.
It is based on prior UN/CEFACT work, specifically the meta model behind the
UN/CEFACT Modeling Methodology (UMM) defined in the N090R9.1 specifi-
cation. The specification schema supports the specification of business transac-
tions and the choreography of business transactions into business collaborations.
These patterns determine the actual exchange of business documents and busi-
ness signals between the partners to achieve the required electronic commerce
transaction.

Caching

Caching is the retention of data to minimize network traffic flow and/or disk access.
See page 153.

Cloud

Cloud and cloud computing are terms likely inspired by the use of clouds in diagrams
to represent the Internet. Originally, cloud was a marketing term, but it has gained
wide use because it provides a sense of how services, etc. are “out there,” somewhere
on the Internet or more locally on an organization’s intranet. See page 35.

Data Cleansing   201

Collaboration Protocol Profile/Agreement (CPP/A)

CPP/A provides interoperability between two parties even though they may use appli-
cation software and runtime support software from different vendors. CPP defines mes-
sage-exchange capabilities and the business collaborations that it supports. CPA defines
the way two parties will interact in performing the chosen business collaboration.

Community Cloud

A community cloud is more restricted than a public cloud. The restriction is to a
“community.” The restriction could be based on an industry segment, by general
interest, or by whatever way a group might be defined. These clouds could be mul-
titenanted. The underlying data center might be provided by a third party or by one
member of the community. See page 41.

Composite Service

A composite service is created by combining services. Composite services are built
using an SOA. See page 31.

CORBA

CORBA is the acronym for Common Object Request Broker Architecture. It was
developed under the auspices of the Object Management Group (OMG). It is middle-
ware. A CORBA-based program from any vendor on almost any computer, operating
system, programming language, and network, can interoperate with a CORBA-based
program from the same or another vendor on almost any other computer, operating
system, programming language, and network.

The first SOA for many people in the past was with the use of object request
brokers (ORBs) based on the CORBA specification. The CORBA specification is
responsible for really increasing the awareness of SOAs. See page 57.

Data Cleansing

Data cleansing is changes made to improve data quality. For existing data being
loaded into a data mart or data warehouse, extract, transform, and load (ETL) soft-
ware could be used to improve the quality of the data. See page 61.

202   Terminology

Data Warehouse

A data warehouse often refers to combining data from many different sources across
an enterprise. It is also referred to as enterprise data warehouse (EDW). The develop-
ment of data warehouses usually involves ETL software. See page 138.

DCOM

DCOM is the acronym for Distributed Component Object Model, an extension of
Component Object Model (COM). DCOM was introduced in 1996 and is designed
for use across multiple network transports, including Internet protocols such as
HTTP. DCOM is based on the Open Software Foundation’s DCE-RPC spec and will
work with both Java applets and ActiveX components through its use of the COM. It
works primarily with Microsoft Windows. See page 57.

ebXML Registry

The ebXML registry is similar to UDDI in that it allows businesses to find one another,
to define trading-partner agreements, and to exchange XML messages in support of
business operations. The goal is to allow all these activities to be performed automati-
cally, without human intervention, over the Internet. The ebXML architecture has many
similarities to SOAP/WSDL/UDDI, and some convergence is taking place with the
adoption of SOAP in the ebXML transport specification. RosettaNet also announced
its adoption of the ebXML transport. The ebXML messaging specification is based on
SOAP with attachments but does not use WSDL. ebXML does add security, guaran-
teed messaging, and compliance with business process interaction specifications.

The ebXML initiative is sponsored by the United Nations Center for Trade
Facilitation and Electronic Business (UN/CEFACT) and OASIS to research, develop,
and promote global standards for the use of XML to facilitate the exchange of electronic
business data. A major goal for ebXML is to produce standards that serve the same or
similar purpose as EDI, including support for emerging industry-specific XML vocab-
ularies. ebXML and Web services hold the promise of realizing the original goals of
EDI, making it simpler and easier to exchange electronic documents over the Internet.

Electronic Data Interchange (EDI)

EDI began as early as the late 1960s. Over the years, there have been significant
efforts to establish standards for EDI. Two significant standards efforts are in the
INCITS (ANSI) ASC X12 committee and UN/EDIFACT (United Nations/Electronic

Extract, Transform, and Load (ETL)   203

Data Interchange for Administration, Commerce, and Transport). These standards
groups are also working with the ebXML and RosettaNet groups.

Enterprise Service Bus (ESB)

An ESB is software that makes it easier to transfer data and instructions among
various software systems: services, business processes, applications, legacy systems,
software agents, BI software, and so on. See page 62.

eXtensible Access Control Markup Language (XACML)

XACML provides fine-grained control of authorized activities, the effect of charac-
teristics of the access requestor, the protocol over which the request is made, autho-
rization based on classes of activities, and content introspection.

eXtensible rights Markup Language (XrML)

XrML is a digital rights language designed for securely specifying and managing
rights and conditions associated with various resources including digital content as
well as services.

eXtensible Stylesheets Language (XSL)

XSL is a language for expressing stylesheets. It consists of three parts: XSL Trans-
formations (XSLT), a language for transforming XML documents; the XML Path
Language (XPath), an expression language used by XSLT to access or refer to parts
of an XML document (XPath is also used by the XLink specification); and XSL
Formatting Objects (XSLFO), an XML vocabulary for specifying formatting seman-
tics. An XSL stylesheet specifies the presentation of a class of XML documents by
describing how an instance of the class is transformed into an XML document that
uses the formatting vocabulary.

Extract, Transform, and Load (ETL)

ETL products are used to migrate data from one source to some destination, usually
a database. The source can be a database or most any other source. The “extract”
part is to select data from the source, “transform” reformats and possibly corrects the

204   Terminology

extracted data, and “load” places the transformed data into the destination database.
See also Data Warehouse and data mart in this guide. See page 139.

Failover

Failover is the process of a secondary machine taking over for a primary machine.
For database failover, see Replication in this guide. See page 167.

HTTP

HTTP stands for HyperText Transfer Protocol. It is a mechanism for sending requests
and responses between computers connected to the Internet or an intranet.

Hybrid Cloud

A hybrid cloud is a combination of public clouds, community clouds, private clouds,
and virtual private clouds. See page 42.

Infrastructure as a Service (IaaS)

Cloud providers in the IaaS category provide an infrastructure that contains the phys-
ical and virtual resources used to build the cloud. These cloud providers provision
and manage the physical processing, storage, networking, and hosting environment.
This is the data center or, in some cases, the data centers. Pricing is often based on
resources used. See page 42.

Internet Inter-ORB Protocol (IIOP)

IIOP is the protocol used for communication between CORBA ORBs. See also
CORBA in this guide.

Java API for XML Parsing (JAXP)

JAXP allows developers to easily use XML parsers in their applications.

Message Router   205

JSON

JSON (JavaScript Object Notation) uses name/value pairs instead of the tags used by
XML. See page 28.

Load Leveling

Load leveling is a design strategy that spreads activity or load across more than one
machine. See page 168.

Loosely Coupled

Loosely coupled is a design concept where the internal workings of one service are
not “known” to another service. All that needs to be known is the external behavior
of the service. This way, the underlying programming of a service can be modified
and, as long as external behavior has not changed, anything that uses that service
continues to function as expected. See page 31.

Mapping

Mapping is the technique used to make one or more rows in database tables appear as
programming language objects or XML. See www.service-architecture.com.

Mashups

A combination of data from multiple services using Web services APIs with the
intent of making the data more useful or easier to visualize. See also Application
Programming Interface (API) in this guide.

Message Router

Message routers direct data from a requesting resource to a responding resource
and back. These are also known as application brokers or message brokers. A router
“knows” which of the other internal systems needs to receive certain types of updates.
The individual internal systems can pass updates to a router and would not need to

http://www.service-architecture.com

206   Terminology

know who receives such updates. A message router usually needs to transform the
data in some way to match the format of the data expected by the receiving system.
See page 62.

Meta-Object Facility (MOF)

The MOF is a set of standard interfaces that can be used to define and manipulate a
set of interoperable meta-models and their corresponding models.

Middleware

Middleware hides the complexity of the communication between two or more sys-
tems or services. This simplifies the development of those systems and services and
isolates the complexity of the communication between them. The different systems or
services can be on the same hardware or on different hardware. See page 57 and 151.

Model Driven Architecture (MDA)

MDA is an open, vendor-neutral approach to interoperability using OMG’s modeling
specifications: Unified Modeling Language (UML), Meta-Object Facility (MOF),
and Common Warehouse Metamodel (CWM).

.NET

Microsoft .NET is a set of Microsoft software technologies for Web services. Micro-
soft .NET is made up of three core components:

1.	 .NET building block services
2.	 .NET device software for devices such as mobile phones, pagers, and so on
3.	 .NET infrastructure

NoSQL Database Management System

NoSQL database management systems are generally meant to work with big data.
NoSQL is usually defined as “not only SQL.” They may have different locking and
concurrency models compared to traditional database management systems. See also
Big Data in this guide. See page 74.

Public Cloud   207

Object Request Broker (ORB)

The ORB is middleware that uses the CORBA specification. See also CORBA in this
guide. See page 57.

OMG Interface Definition Language (IDL)

The IDL permits interfaces to objects to be defined independent of an object’s
implementation. After defining an interface in IDL, the interface definition is
used as input to an IDL compiler that produces output to be compiled and linked
with an object implementation and its clients. See also CORBA. (There are other
uses of the IDL initialism. For example, there is also a Java IDL.)

Partner Interface Process (PIP)

A PIP defines business processes between trading partners. PIPs fit into seven clus-
ters, or groups of core business processes, that represent the backbone of the trading
network. Each cluster is broken down into segments—cross-enterprise processes
involving more than one type of trading partner. Within each segment are individual
PIPs. PIPs are specialized system-to-system XML-based dialogs. Each PIP speci-
fication includes a business document with the vocabulary and a business process
with the choreography of the message dialog.

Platform as a Service (PaaS)

Cloud providers in the PaaS category provide a complete computing platform. They
provision and manage cloud infrastructure as well as provide development, deploy-
ment, and administration tools. Here you will find the features that make a platform:
operating systems, web servers, programming language, database management sys-
tems, and so on. This is where the provider might provide elasticity: the ability to
scale up or scale down as needed. See page 42.

Public Cloud

A public cloud allows multiple organizations to provide multiple types of services
(often referred to as multitenancy). The location for the underlying data center could
be most anywhere in the world (often referred to as location independence). The
underlying hardware is usually chosen by the cloud provider and not the users of the

208   Terminology

service (here you will likely find virtualization and device independence). The public
cloud can also be described as an external cloud when viewed from within a given
organization. See page 41.

Registry

A registry is a network service that identifies resources on a network and makes them
accessible to users and applications. For Web services, directories could use UDDI
or the ebXML directory. For an example, See page 20.

REgular LAnguage Description for XML (RELAX)

RELAX is a specification for describing XML-based languages. It is standardized by
INSTAC XML SWG of Japan. Under the auspices of the Japanese Standard Associa-
tion (JSA), this committee develops Japanese national standards for XML. See also
RELAX NG.

RELAX NG

The purpose of this committee is to create a specification for a schema language for
XML based on TREX and RELAX. The key features of RELAX NG are that it does
not change the information set of an XML document and supports XML namespaces,
unordered content, and mixed content.

Replication

Replication is the process of making multiple copies of data on separate machines.
The replicated data will be available on the secondary machine should it need to take
over when the primary machine fails. See page 168.

Representational State Transfer (REST)

Representational state transfer (REST) is a style of architecture based on a set of
principles that describe how networked resources are defined and addressed. REST
is an alternative to the World Wide Web Consortium’s (W3C) set of standards that

Service-Oriented Architecture (SOA)   209

include SOAP and other WS-* specifications. REST has proved to be a popular
choice for implementing Web services. See page 22.

Resource Description Framework (RDF)

RDF is a way of describing a Web site’s metadata, or the data about the data at the site.

RosettaNet Implementation Framework (RNIF)

RNIF provides the packaging, routing, and transport of RosettaNet PIP messages and
business signals.

Schematron

Schematron is a language and toolkit for making assertions about patterns found in
XML documents. It can be used as a friendly validation language and for automati-
cally generating external annotation (links, RDF, perhaps topic maps). Because it
uses paths rather than grammars, it can be used to assert constraints that cannot be
expressed using XML schemas.

Security Assertion Markup Language (SAML)

SAML is an XML framework for exchanging authentication and authorization
information.

Service

A service is a function that is well-defined, self-contained, and does not depend on
the context or state of other services. See page 17.

Service-Oriented Architecture (SOA)

An SOA is essentially a collection of services. These services communicate with
each other. The communication can involve either simple data passing or two or more
services coordinating some activity. See page 17.

210   Terminology

Service Provisioning Markup Language (SPML)

SPML is an XML-based framework specification for exchanging user, resource, and
service-provisioning information. The SPML specification is being developed with
consideration of the following provisioning-related specifications: Active Digital
Profile (ADPr), eXtensible Resource Provisioning Management (XRPM), and Infor-
mation Technology Markup Language (ITML).

SOAP

SOAP provides the envelope for sending Web services messages over the Internet/
intranet. The envelope contains two parts:

1.	 An optional header providing information on authentication, encoding of data, or
how a recipient of a SOAP message should process the message.

2.	 The body that contains the message. These messages can be defined using the
WSDL specification.

SOAP commonly uses HTTP, but other protocols such as Simple Mail Transfer
Protocol (SMTP) may be used. SOAP can be used to exchange complete documents
or to call a remote procedure. (SOAP at one time stood for Simple Object Access
Protocol. Now the letters in the acronym have no particular meaning.) See page 20.

Software as a Service (SaaS)

Cloud providers in the SaaS category provide complete software systems. SaaS is a common
way to provide applications such as email, calendars, customer relationship management,
social networks, content management, documentation management, and other office pro-
ductivity applications. SaaS is also known as “on-demand software.” See page 42.

Tree Regular Expressions for XML (TREX)

TREX is a language for validating XML documents. TREX has been merged with
RELAX to create RELAX NG. All future development of TREX will take place as
part of the RELAX NG effort. See also RELAX NG.

Virtual Private Cloud   211

Unified Modeling Language (UML)

The UML is a specification of a graphical language used for visualizing, specifying,
constructing, and documenting the artifacts of distributed object systems.

Uniform Resource Identifier (URI)

URIs, also known as URLs, are short strings that identify resources on the Web:
documents, images, downloadable files, services, electronic mailboxes, and other
resources.

Universal Data Model

A universal data model is a template or generic data model that can be used as a
building block for the development of a data model. See page 108.

Universal Description, Discovery, and Integration (UDDI)

UDDI provides the definition of a set of services supporting the description and
discovery of (1) businesses, organizations, and other Web services providers, (2) the
Web services they make available, and (3) the technical interfaces that may be used
to access those services. The idea is to “discover” organizations and the services
that organizations offer, much like using a phone book or dialing information.
See page 19.

Virtual Private Cloud

Cloud providers in this category provide some type of partitioning to ensure that the
private cloud remains private. Typically, a virtual private cloud provider allows the
definition of a network similar to a traditional network. Within such a network, it is
possible to have systems such as database managements systems, BI/analytics sys-
tems, application servers, and so on. See page 42.

212   Terminology

Web Distributed Data Exchange (WDDX)

WDDX is an XML-based technology that enables the exchange of complex data
between Web programming languages. WDDX consists of a language-independent
representation of data based on XML and a set of modules for a wide variety of lan-
guages that use WDDX.

Web Service Endpoint Definition (WSEL)

WSEL is an XML format for the description of non-operational characteristics of
service endpoints, like quality-of-service, cost, or security properties.

Web Services Component Model

The Web services component model is an XML- and Web-services–centric component
model for interactive Web applications. The designs must achieve two main goals:
enable businesses to distribute web applications through multiple revenue channels
and enable new services or applications to be created by leveraging existing applica-
tions across the Web.

Web Services Conversation Language (WSCL)

The WSCL allows the business-level conversations or public processes supported by
a Web service to be defined. WSCL specifies the XML documents being exchanged
and the allowed sequencing of these document exchanges. WSCL conversation def-
initions are themselves XML documents and can therefore be interpreted by Web
services infrastructures and development tools.

Web Services Description Language (WSDL)

WSDL is a format for describing a Web services interface. It is a way to describe
services and how they should be bound to specific network addresses. WSDL has
three parts:

1.	 Definitions
2.	 Operations
3.	 Service bindings

Web Services for Report Portals (WSRP)   213

Definitions are generally expressed in XML and include both data type defini-
tions and message definitions that use the data type definitions. These definitions are
usually based on some agreed upon XML vocabulary. See page 19.

Web Services Experience Language (WSXL)

The WSXL enables businesses to distribute Web applications through multiple revenue
channels and to enable new services or applications to be created by leveraging existing
applications across the Web. WSXL is built on widely accepted established and emerg-
ing open standards and is designed to be independent of execution platform, browser,
and presentation markup. Interactive Web applications that are developed using WSXL
can be delivered to end users through a diversity of deployment channels: directly to a
browser, indirectly through a portal, or by embedding into a third party Web application.

Web Services Flow Language (WSFL)

The WSFL is a language for the description of Web services compositions. WSFL
considers two types of Web services compositions:

1.	 The appropriate usage pattern of a collection of Web services, in such a way that
the resulting composition describes how to achieve a particular business goal;
typically, the result is a description of a business process

2.	 The interaction pattern of a collection of Web services; in this case, the result is a
description of the overall partner interactions

Web Services for Interactive Applications (WSIA)

WSIA is an XML- and Web-services–centric framework for interactive Web applica-
tions. The designs must achieve two main goals: enable businesses to distribute Web
applications through multiple revenue channels and enable new services or applica-
tions to be created by leveraging existing applications across the Web.

Web Services for Report Portals (WSRP)

WSRP is an XML and Web-services standard that will allow for the plug-and-play
of portals, other intermediary Web applications that aggregate content, and applica-
tions from disparate sources. These portals will be designed to enable businesses to

214   Terminology

provide content or applications in a form that does not require any manual content or
application-specific adaptation by consuming applications.

Web Services User Interface (WSUI)

WSUI enables Web platforms implemented in entirely different languages (Java,
COM/.NET, and Perl) to interoperate and share applications. By using WSUI, an
application can be packaged with a WSUI descriptor file and an XSLT stylesheet
and be dynamically integrated into another website that is running a WSUI container
implementation.

Workflow

Workflow refers to how two or more business processes or services might interact.
See page 115.

XLANG

XLANG is a notation for the automation of business processes based on Web ser-
vices for the specification of message exchange behavior among participating Web
services. XLANG is expected to serve as the basis for automated protocol engines
that can track the state of process instances and help enforce protocol correctness in
message flows.

XML Common Biometric Format (XCBF)

XCBF is a common set of secure XML encoding for the formats specified in CBEFF,
the Common Biometric Exchange File Format.

XML Encryption

XML encryption is a process for encrypting/decrypting digital content (includ-
ing XML documents and portions thereof) and an XML syntax used to repre-
sent the encrypted content and information that enables an intended recipient to
decrypt it.

XML Protocol (XMLP)   215

XML Key Management Specification (XKMS)

XKMS is a specification of XML application/protocol that allows a simple client to obtain
key information (values, certificates, and management or trust data) from a Web service.

XML Linking Language (XLink)

XLink allows elements to be inserted into XML documents to create and describe
links between resources. It uses XML syntax to create structures that can describe
the simple unidirectional hyperlinks of HTML, as well as more sophisticated links.

XML Namespaces

An XML namespaces is a collection of names, identified by a URI, which are used in
XML documents as element types and attribute names. XML namespaces differ from
the “namespaces” conventionally used in computing disciplines in that the XML ver-
sion has internal structure and is not, mathematically speaking, a set.

XML Path Language (XPath)

XPath is the result of an effort to provide a common syntax and semantics for func-
tionality shared between XSL Transformations and XPointer. The primary purpose
of XPath is to address parts of an XML document.

XML Pointer Language (XPointer)

XPointer allows addressing the internal structures of XML documents. It allows for exami-
nation of a hierarchical document structure and choice of its internal parts based on various
properties, such as element types, attribute values, character content, and relative position.

XML Protocol (XMLP)

XMLP provides simple protocols that can be ubiquitously deployed and easily
programmed through scripting languages, XML tools, interactive Web develop-
ment tools, etc. The goal is a layered system that will directly meet the needs of

216   Terminology

applications with simple interfaces (e.g., getStockQuote or validateCreditCard) and
can be incrementally extended to provide the security, scalability, and robustness
required for more complex application interfaces.

XML Schema

XML schemas express shared vocabularies and allow machines to carry out rules
made by people. They provide a means for defining the structure, content, and
semantics of XML documents.

XML Signature

XML Signature is an XML syntax used for representing signatures on digital content
and procedures for computing and verifying such signatures. Signatures provide for
data integrity and authentication.

XSL Formatting Objects (XSL-FO)

XSL-FO is a set of tools developers and web designers use to specify the vocabulary
and semantics for paginated presentation.

XSL Transformations (XSLT)

XSLT is a language for transforming XML documents into other XML documents.
XSLT is designed for use as part of XSL, which is a stylesheet language for XML. In
addition to XSLT, XSL includes an XML vocabulary for specifying formatting. XSL
specifies the styling of an XML document by using XSLT to describe how the docu-
ment is transformed into another XML document that uses the formatting vocabulary.
XSLT may be used independently of XSL. However, XSLT is not intended as a com-
pletely general-purpose XML transformation language. Rather it is designed primar-
ily for the kinds of transformations that are needed when XSLT is used as part of XSL.

XQuery

XQuery is designed to be a language in which queries are concise and easily under-
stood. It is also flexible enough to query a broad spectrum of XML information
sources, including both databases and documents.

217

Further Reading

Adler, Mike. An Algebra for Data Flow Diagram Process Decomposition, IEEE
Transactions on Software Engineering, 14(2), Feb. 1988.

Bridges, William. Managing Transitions: Making the Most of Change. New York:
DeCapo Lifelong Books, 2009.

Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software
Architectures, doctorial, available at www.ics.uci.edu/~fielding/pubs/dissertation/
rest_arch_style.htm.

Humphrey, Watts S. Why Big Software Projects Fail: The 12 Key Questions. Cross-
Talk: The Journal of Defense Software Engineering, March 2005.

Humphrey, Watts S. Multi-year study of 13,000 programs conducted by the Soft-
ware Engineering Institute, Carnegie Mellon. Mentioned in “Why Software Is So
Bad ... and What’s Being Done to Fix It,” Charles C. Mann, MSNBC Technology
Review, June 27, 2002.

B
ibliography

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

218   Bibliography

Koch, Christopher. The New Science of Change, CIO Magazine, Oct. 2006.
Lewin, Kurt. Field Theory in Social Science. New York: Harper and Row, 1951.
Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing: Recom-

mendations of the National Institute of Standards and Technology, NIST Special
Publication 800-145, September 2011, pg. 2.

Rock, David, and Jeffrey Schwartz. The Neuroscience of Leadership, strategy +
business, Summer 2006.

Websites

Application Server Performance Gain, http://www.service-architecture.com/applica-
tion-servers/articles/benchmark_using_a_transaction_accelerator.html.

Business Process Modeling Notation (BPMN), Object Management Group, http://
www.bpmn.org/.

Design Decomposition for Business Process and Data Flow Diagrams, Barry & Asso-
ciates, http://www.designdecomposition.com/.

Discussion of Mapping Issues, http://www.service-architecture.com/object-
relational-mapping/articles/mapping_layer.html.

Holiday Shoppers Flocking Online Create Record Breaking Sales, http://www.
forbes.com/sites/anthonydemarco/2011/11/27/holiday-shoppers-flocking-
online-create-record-breaking-sales/.

NoSQL, http://www.nosql-database.org/.
Organizations Developing Web Service Specifications, http://www.service-architec-

ture.com/web-services/articles/organizations.html.
Sematic Web Wikipedia, http://en.wikipedia.org/wiki/Semantic_Web.
Service-Oriented Architecture Modeling Language (SoaML), Object Management

Group, http://www.omg.org/spec/SoaML/.
Web Services Architecture, http://www.w3.org/TR/ws-arch/.

http://www.service-architecture.com/application-servers/articles/benchmark_using_a_transaction_accelerator.html
http://www.service-architecture.com/application-servers/articles/benchmark_using_a_transaction_accelerator.html
http://www.designdecomposition.com/
http://www.designdecomposition.com/
http://www.designdecomposition.com/
http://www.service-architecture.com/object-relational-mapping/articles/mapping_layer.html
http://www.service-architecture.com/object-relational-mapping/articles/mapping_layer.html
http://www.forbes.com/sites/anthonydemarco/2011/11/27/holiday-shoppers-flocking-online-create-record-breaking-sales/
http://www.forbes.com/sites/anthonydemarco/2011/11/27/holiday-shoppers-flocking-online-create-record-breaking-sales/
http://www.forbes.com/sites/anthonydemarco/2011/11/27/holiday-shoppers-flocking-online-create-record-breaking-sales/
http://www.nosql-database.org/
http://www.service-architecture.com/web-services/articles/organizations.html
http://www.service-architecture.com/web-services/articles/organizations.html
http://en.wikipedia.org/wiki/Semantic_Web
http://www.omg.org/spec/SoaML/
http://www.w3.org/TR/ws-arch/

A
Accounting XML, 187
ACORD XML

for life insurance, 191
for property and casualty insurance, 191
for reinsurance and large commercial, 191

Adapters, 198
Address Data Interchange Specification

(ADIS), 181
Address XML, semantic vocabulary, 181
AdsML framework, 187
Advertising XML, 187
Agents, 198
Analytics, 198
Application programming interface (API),

10, 39, 198
Application routers, 62
Application server, 198–199
Application vulnerability description language

(AVDL), 181
Architecture Description Markup Language

(ADML), 188
Astronomy XML, 187
Atomic service, 199
Audio-video (AV) system

analogy, 36
simpler AV system, 38
software systems architecture, 16–17

AV system. See Audio-video (AV) system

B
Big data, 199
Brittleness, 26–27
Building XML, 187–188
Business intelligence (BI), 199
Business intelligence (BI)/analytics systems,

10, 59–60, 151–152
Business process, 115

analysis lane, 123–124
analyze

with decomposition matrix or other
technique, 123

for services, 123–124

diagram, 116–119
Business process execution language

(BPEL), 199–200
Business process modeling notation

(BPMN), 200
Business process query language (BPQL), 200
Business process specification schema

(BPSS), 200

C
Caching, 200
Candidate project analysis lane, 124–125

add project to candidate pool, 124–125
use force field analysis for each project, 124
use resistance issues and suggestions

worksheet for each project, 124
Change issues affecting adoption, 85–88

consolidated analysis for adopting SOA with
cloud computing, 102–105

forms of resistance, 88–92
feeling that jobs may be threatened, 90–91
inertia, 90
lack of training/understanding, 89
loss of familiarity, competence, and control,

91–92
not invented here, 91
our problems are special, 91
power of internal “expert,” 89–90

resistance to change, 85–88
some resistance scenarios

complicated, 95–98
elephant in room, 101–102
Guerilla tactics, 100–101
resistance issues in this scenario, 100–102
suggestions for addressing resistance,

101–102
suggestions for addressing resistance to

change, 92–95
ask for participation and form

partnerships, 95
communicate at many levels, 94
get resistance out in open, 94–95
Guerilla tactics, 98–100

Index

219

220   Index

really listen, 93–94
resistance issues in this scenario, 96–99
seek appropriate avenues to involve

people, 94
selecting right people, 92–93
suggestions for addressing resistance,

99–100
suggestions for addressing resistance to

change, 97–98
use second set of eyes, 93

technical change issues diminishing, 85
worksheet for resistance issues and

suggestions, 102
Change management issues during

development, 108
adopting semantic vocabulary, 108–109
buying a model, 108–109
change issues, encountered, 108–109
design as little as possible, 108–109
existing services, 108
methodology, 110–111
minimal coding, 109–110
new system, 108
reduce project scope, 110
second check, 111
using small teams, 111–112

Chem eStandards, 188
Chemical markup language (CML), 188
Chemistry XML, 188
City geography markup language

(CityGML), 183
Clinical Data Interchange Standards

Consortium (CDISC) Operational
Data Model (ODM), 190

Cloud, 200–201
Cloud computing

affected by additional services of,
organizations, 37

availability issues, 166–167
availability options for database

management systems, 168
being self cloud provider, 170
blurring of internal and external services,

37–38
business issues, 165
categories of cloud providers, 42–44
cloud brokers, 170
data center, virtual machines/servers, 166
data center considerations, 166–167
defined, 4, 39–41
disaster recovery issues, 167
expand your internal SOA to include external

services, 164–165

change issues, 165–166
staffing issues, 164

getting started with, 164
governance considerations, 165–166
high-definition television (HDTV) and

smartphone connected to, 36
internal systems with cloud computing for

big data store and CRM service, 77
legal issues, 165
organizations moving to cloud, 37
organizations using SOA with cloud

computing, 38–39
relationship of web services, SOA and, 39
SOA basics with various combinations of, 40
stack, 43
technical forces driving adoption of. See

Technical forces driving adoption
technical issues, 165–166
technical issues related to availability,

examples, 167–170
database availability options, 168–169
failover options for messaging and

databases, 167–168
replication options for messaging and

databases, 169–170
types of, 41–42

community cloud, 41
hybrid cloud, 42
private cloud, 41–42
public cloud, 41–42
virtual private cloud, 42

Cloud providers, 40–41
categories of

infrastructure as service (IaaS), 42–43
Platform as service (PaaS), 42– 43
Software as service (SaaS), 42–43

pricing, 41
Collaboration protocol profile/agreement

(CPP/A), 201
Commoditizing services, 42–44
Common Data Format Markup Language

(CDFML), 193
Common Object Request Broker Architecture

(CORBA), 57, 59
Common Picture eXchange environment

(CPXe), 193
Community cloud, 201
Composite service, 201
Computing environment XML, semantic

vocabulary, 181–182
Connected representative (C.R.), 3–4

augmenting experiences, 41–42
business trip

Index   221

managing, 12
services and data interchange related to, 11

business trip, services for, 171–174
detail for services and data interchange related

to, 11
external expense report service used by, 39
future of C.R.’s organization, 8
including PaaS cloud provider, SaaS cloud

provider, and middle-tier persistence,
systems used by, 158

Connections, 18
web services, 18

Construction XML, 188
Content syndication XML, semantic

vocabulary, 182
Controlled trade markup language

(CTML), 185
CORBA, 29–30, 201
Customer data, keeping track of detailed, 10
Customer data warehouse

creating, 139
Customer Info Request, 7
Customer information XML, semantic

vocabulary, 182–183
Customer relationship management

(CRM) service, 6

D
Data cleansing, 61, 139, 201–202
Data element definition, 51
Data warehousing, 202
DCOM, 202
Deployment lane, 125–126

analyze parameters needed for interface,
125–126

analyze vocabulary needed for interface, 125
business process, 126
deploy services, 126
refactor services using decomposition matrix

or other technique, 126
Deployment selection lane, 125

project selection with best chance of success,
125

Device independence, 41
Distributed Common Object Model (DCOM), 57
DocBook, 193–194
DOT service, 5
Driving forces, 48–51, 53

E
EbXML registry, 202
Education XML, 188

Election Markup Language (EML), 189
Electronic data interchange (EDI), 202–203
Electronic data interchange (EDI) XML,

semantic vocabulary, 183
Enterprise data warehouse (EDW),

59, 138–140, 157
adopting, 59–62
creating, 138–139

Enterprise service bus (ESB), 62–67, 158, 203
for existing software systems, 65

ETL software, 61
EXtensible Access Control Markup Language

(XACML), 203
EXtensible Business Reporting Language

(XBRL), 188
EXtensible Customer Information Language

(xCIL), 185
EXtensible Customer Relationships Language

(xCRL), 185–186
EXtensible Data Format (XDF), 184–185
EXtensible Name Address Language

(xNAL), 181
EXtensible rights Markup Language

(XrML), 203
EXtensible Stylesheets Language (XSL), 203
External cloud, 41
Extract, Transform, and Load (ETL),

 203–204

F
Failover, 204
Finance xml, 188–189
Financial information eXchange (FIX)

protocol, 188
Financial products markup language

(FpML), 188
Flexible Image Transport System Markup

Language (FITSML), 187
FOOD XML, 189
Force field analysis, 48–50, 114

for adopting EDW, 48–50
for adopting ESB, 66
adopting SOA with cloud computing, 104

of technical issues related to, 86, 104
for adopting standard

communications protocol, 51
data element definitions, 50
enterprise-wide software, 56

of change issues related to adopting SOA, 87
defined, 41
driving forces, 48
for making system change, 49

222   Index

overview, 48
restraining forces, 48
web services, adopting, 53

G
Geography markup language (GML), 183
Geospatial XML, semantic vocabulary, 183–184
Global Justice XML Data Model (Global

JXDM), 191
Global positioning system (GPS), 5
Government XML, 189–190
Guerilla tactics, 98–101

H
Healthcare XML, 190
Health Level 7 (HL7) Healthcare XML

Format, 190
HR XML, 190
HTTP, 204
HumanML, 184
Human resources (HR) XML, 190
Human XML, semantic vocabulary, 184
Hybrid cloud, 204

I
Incremental SOA, change management with, 114

analyze business process for services, 123–124
analyze business process with decomposition

matrix or other technique, 123
business process analysis lane, 123–124
candidate project analysis lane, 124–125

add project to candidate pool, 124–125
use force field analysis for each project, 124
use resistance issues and suggestions

worksheet for each project, 124
data flow diagram, 119–121
decomposition matrix, 115–121

business process diagram, 116–119
decomposition matrix for services, 119
decomposition of services, 120
deployment lane, 125–126

analyze parameters needed for interface,
125–126

analyze vocabulary needed for
interface, 125

business process, 126
deploy services, 126
refactor services using decomposition

matrix or other technique, 126
deployment selection lane, 125

project selection with best chance of
success, 125

force field analysis, 114
generated business process diagram, 118
incremental SOA analysis, 122–127

principles for, 121–122
modify business process, 123
tools, 114–121
vocabulary management lane, 126–127

add to organization’s semantic
vocabulary, 127

develop organization-specific
vocabulary, 127

review cross-industry vocabularies, 127
review industry-specific vocabularies,

126–127
worksheet for resistance issues and

suggestions, 114–115
Incremental SOA analysis, 122–127

principles for, 121–122
Inertia, comfortable in current situation, 90
Information and content exchange (ICE), 182
Information technology used for business trip,

3–8
Infrastructure as a Service (IaaS),

42–43, 204
Instrument Markup Language (IML), 190
Instruments XML, 190–191
Insurance XML, 191
Interactive financial exchange (IFX), 188
Internet Inter-ORB Protocol (IIOP), 204
Intrusion detection message exchange format

(IDMEF), 181

J
Java API for XML Parsing (JAXP), 204–205
JavaScript Object Notation (JSON), 28, 205

when to use, 28

L
Legal XML, 191–192
LegalXML eContracts, 191
LegalXML electronic court filing, 191
LegalXML eNotary, 191
LegalXML integrated justice, 191
LegalXML legal transcripts, 191
LegalXML legislative documents, 191–192
LegalXML Online Dispute Resolution

(OdrXML), 192
LegalXML subscriber data handover interface

(SDHI), 192
Load leveling, 205
Localization XML, semantic vocabulary, 184
Location independence, 41, 207–208
Loosely coupled, 205

Index   223

M
Mail.XML, 181
Manufacturing XML, 192
Mapped, 205
Mapping, 205
Market data definition language (MDDL),

188–189
Mashups, 205
MathML, 184
Math XML, semantic vocabulary, 184–185
Meat and Poultry XML (mpXML) Schema, 189
Mergers and acquisitions, 53, 56–57, 69
Message routers, 54, 205–206

example transformations needed with, 64
interconnections when using, 53
mechanism, 204

Meta-object facility (MOF), 206
Middleware, 206
Model Driven Architecture (MDA), 206
Mortgage Industry Standards Maintenance

Organization (MISMO), 194
Multitenancy, 41, 207–208

N
National Information Exchange Model

(NIEM), 189–190
.NET, 206
News Industry Text Format (NITF), 192
NewsML, 192–193
News XML, 192–193
NoSQL database management system,

206–207

O
OBIX, 187
Object request broker (ORB), 29–30, 57, 207

adopting, 58
defined, 57

OGC web services (OWS), 183
Oil and gas XML, 193
OMG interface definition language

(IDL), 207
Open applications group integration specification

(OAGIS), 185
OpenDocument Format (ODF), 185
Open financial exchange (OFX) XML Schema,

189
Opengis location services (openls), 183
OpenMath, 184
Open mathematical documents (OMDoc), 184
Open office XML, 185
OpenTravel Alliance (OTA), 194

P
PapiNet, 192
Parlay X Web services, 194
Partner Interface Process (PIP), 207
Photo XML, 193
Physics XML, 193
PIDX standards, 193
Planning and scheduling language on XML

specification (PSLX), 192
Platform as a Service (PaaS), 42–43, 150, 158,

207
 “Plug-compatible” software components, 110
Production Planning and Scheduling (PPS), 192
PROSE/XML, 193–194
Public cloud, 207–208
Publishing Requirements for Industry Standard

Markup (PRISM), 193
Publishing XML, 193–194

R
Real estate XML, 194
Real Estate Transaction Standard (RETS), 194
Real simple syndication (RSS), 182
Reduce project scope, 110
Registry, 208
REgular LAnguage Description for XML

(RELAX), 208
RELAX NG, 208
Replication, 208
Representational State Transfer (REST),

22, 208–209
messaging, 23
using, 22–24
when to use, 28

Research information eXchange markup
language (RIXML), 189

Resistance to change, 85–88
forms of resistance, 88–92

feeling that jobs may be threatened, 90–91
inertia, 90
lack of training/understanding, 89
loss of familiarity, competence, and control,

91–92
not invented here, 91
our problems are special, 91
power of internal “expert,” 89–90

resistance issues and suggestions
worksheet, 103

suggestions for addressing, 92–95, 97–98
ask for participation and form

partnerships, 95
communicate at many levels, 94

224   Index

get resistance out in open, 94–95
Guerilla tactics, 98–100
really listen, 93–94
resistance issues in this scenario, 96–99
suggestions for addressing resistance,

99–100
use second set of eyes, 93

Resource Description Framework (RDF), 209
Restraining forces, 48–51, 53

affecting adoption of Web service,
52–53

redundancy of data, 61
related to data for ORB, 57–58
weakening, 49, 60

RosettaNet Implementation Framework
(RNIF), 209

S
Scenarios, resistance

complicated, 95–98
elephant in room, 101–102
Guerilla tactics, 100–101
resistance issues in this scenario, 100–102
suggestions for addressing resistance,

101–102
Schematron, 209
Schools interoperability framework (SIF), 188
Security assertion markup language (SAML),

209
Semantic vocabulary, 29, 180–186

accounting XML, 187
address XML, 181
adopting, 108–109
computing environment XML, 181–182
content syndication XML, 182
customer information XML, 182–183
electronic data interchange (EDI) XML, 183
Geospatial XML, 183–184
human XML, 184
localization XML, 184
math XML, 184–185
open applications group integration

specification (OAGIS), 185
open office XML, 185
opportunity and importance of, 29
topic maps XML, 185
trade XML, 185–186
translation XML, 186
universal business language (UBL), 186
universal data element framework

(UDEF), 186
Service, 209
Service-oriented architecture (SOA)

adopting, 57
technical, 69

architecture in, 4
assembly of services into, 32
atomic service, 31
basics, 18
cloud, with advantage of, 37
collection of services in, 17
composite service, 31
conflict between indeterminate and

operational access, 149
C.R.’s organization, systems supporting, 151
defined, 4, 15–16, 209–210
design challenge, 31
establishing, 146–150

basics for middle tier architecture, 153–154
caching performance gain, 155–156
design considerations, 146–148
expanded catching, 154–155
fast growth of data warehouse, 150–151
likely change issues, 149–150
middle-tier databases, 156–157
persistence in middle tier, 153–157
protected catching, 155
response time of services provided by

internal system was inadequate,
151–157

staffing issues, 148–149
unplanned/unexpected issues, 150–157

example layers of, 160
explained, 29–33
external expense report service used by

C. R., 39
getting started with, 145
governance, 161–162
history, 16
identification and design of, 30–31
interface services of, 160
keep high-volume, high-speed messages

within service, 148
loosely service, 31
managing change with incremental.

See Incremental SOA, change
management with

overview, 17–19
relationship of web services, cloud computing

and, 39
relationship of web services and, 39
services and, 157–161
sources of services in, 32
systems used by C. R.’s organization, 158
technical forces driving adoption of. See

Technical forces driving adoption

Index   225

two data services, 159
use with cloud computing, 38–39
using PaaS cloud provider for big data store

and BI/analytics, 152
using persistent cache in middle tier, 156

Service provisioning markup language
(SPML), 210

Services
atomic, 17
composite, 17
defined, 17
identification and design of, 30–31
provider and WSDL, 19–20

Shipment and Logistics Specification
(SnL), 194

Simple Object Access Protocol (Soap),
20–22
alternative to. See Representational State

Transfer (REST)
messaging, 23
messaging with directory, 21
using, without UDDI, 22

Small and medium-sized business XML
(smbXML), 187

Smartphone
See also Virtual personal assistant (VPA)
C. R. using, 3–8
connected to cloud and, 36
managing business trip, 3–8

SOA. See Service-oriented architecture (SOA)
Soap, 210
Software as service (SaaS), 42–43, 157, 210

adopting, 56
Specifications for publisher & agency

communications exchange XML
(SPACE/XML), 187

SportsML, 193
SWIFT standards, 189

T
Tax XML, 190
TCP/IP, 51
Technical forces driving adoption

of cloud computing, 69
adopting platform as a service, 74–76
adopting software as a service, 72–74

service-oriented architecture with cloud
computing, 76–79

of SOA, 47
adapters, 63
adopting enterprise service bus, 62–67
brittleness of fixed record exchanges, 61
data quality issues, 61

ETL software, 61
message routers, 62–63
possible connections for internal

systems, 51
Technical forces driving adoption of, web

services
adopting standard communications protocol,

51–52
adopting standard data element definitions,

50–51
adopting web services, 52–54
aspects of web services, 47

Telecommunications XML, 194
Topic Maps Published Subjects for Geography

and Languages (GeoLang), 185
Topic maps XML, semantic vocabulary, 185
Trade XML, 185–186
Translation web services, 186
Translation XML, semantic vocabulary, 186
Travel XML, 194
Tree Regular Expressions for XML

(TREX), 210–211

U
Unified Modeling Language (UML), 211
Uniform Resource Identifier (URI), 211
Universal business language (UBL), 186
Universal data element framework

(UDEF), 186
Universal data models, 108, 211
Universal description, discovery, and integration

(UDDI), 20, 211
using SOAP without UDDI, 22

V
Virtualization, 41
Virtual personal assistant (VPA), 10

advantages, 7–8
application programming interfaces

(API), 5
C.R. using, 4
defined, 4
GPS of, 5
information request by C.R., 6
meetings and messages, 4–5
work mechanism, 4–5

Virtual private cloud, 13, 42, 211–212
Vocabulary management lane, 126–127

add to organization’s semantic vocabulary, 127
develop organization-specific vocabulary, 127
review cross-industry vocabularies, 127
review industry-specific vocabularies,

126–127

226   Index

W
Web application security (WAS), 182
Web-based enterprise management (WBEM)

initiative, 181–182
Web Distributed Data Exchange (WDDX), 212
Web Service Endpoint Definition

(WSEL), 212
Web services, 4, 15–16

adapters, 67
adapt existing systems to use, 138–142

additional systems, 141–142
change issues, 142
connect components to web services,

140–142
enterprise database warehouse, 138–140
staffing issues, 142

add additional systems, 141
all connections look same, 132
basics, 153
component model, 212
connect data warehouse and internal system

with, 151
display content on webpage

using external service to, 159
using internal service to, 40

drive to use, effect of, 26
to exchange data, 50
exchange data between existing systems,

135–136
explained, 10
getting started, 132
history of specification, 19
impact of, 132–133
likely change issues, 137–138
relationship of cloud computing,

service-oriented architecture
(SOA) and, 39

and service-oriented architectures, 3
Soap messages sent using, 7
specifications, 22–29
staffing issues, 137
standards, establishment, 4
start by experimenting with, 133–138

develop external service, 134–135
use external service, 132

technical forces driving adoption of.
See Technical forces driving adoption

use of, 133
using ESB, 136–137

Web services conversation language
(WSCL), 212

Web services description language
(WSDL), 19, 212–213

Web services distributed management
(WSDM), 182

Web services flow language (WSFL), 213
Web services for Interactive Applications

(WSIA), 213
Web Services for Report Portals (WSRP),

213–214
Web Services user Interface (WSUI), 214
Workflow, 214

X
XLANG, 214
XML, 24–28

adding new element, 25
alternative. See JSON
brittleness of fixed record messages, 27
copying wrong data using fixed records, 27
effect of change, 26–27
example of resilience provided by tagged

messages, 25
fixed record format, 26
record content changes without changing

length record, 26
vocabularies, 29
vs. JSON, 28–29
when to use, 28

XML Book Industry Transaction Standards
(XBITS), 213

XML common biometric format (XCBF), 214
XML/EDI, 183
XML encryption, 214
XML key management specification (XKMS),

194
XML linking language (XLink), 215
XML Localization Interchange File Format

(XLIFF), 184
XML namespaces, 215
XML path language, 215
XML pointer language (XPointer), 215
XML protocol (XMLP), 215
XML schema, 216
XML signature, 216
XQuery, 216
XSL formatting objects (XSL-FO), 216
XSL transformations (XLST), 216

	Front Cover
	Half title

	Title page

	Copyright

	Contents

	Introduction
	PART I
	Chapter 1 A Business Trip in the Not-Too-Distant Future
	The Business Trip
	Summary

	Chapter 2 Information Technology Used for the Business Trip
	Keeping Track of Detailed Customer Data
	Using Virtual Personal Assistants
	Managing C. R.’s Business Trip
	Augmenting C. R.’s Experiences
	Commoditizing Services
	Viewing All Services the Same Way
	Summary

	Chapter 3 Web Services and Service-Oriented Architectures
	Service-Oriented Architecture Overview
	Services
	Connections
	The Architecture in SOA

	Web Services Explained
	History of Web Services Specification
	Web Services Description Language
	Universal Description, Discovery, and Integration
	SOAP

	Web Services Specifications
	Using SOAP without UDDI
	Using REST
	Using XML
	JSON, an XML Alternative
	When to Use SOAP, REST, JSON, or Other Options

	The Opportunity and Importance of Standardized Semantic Vocabularies

	Service-Oriented Architecture Explained
	Relationship of Web Services and SOA
	Identification and Design of Services
	Service-Oriented Architecture

	Summary

	Chapter 4 Cloud Computing
	Blurring of Internal and External Services
	Organizations of Any Size Can Use a Service-Oriented Architecture with Cloud Computing
	The Cloud
	Types of Clouds
	Categories of Cloud Providers
	Summary

	PART II
	Chapter 5 Technical Forces Driving the Adoption of Web Services
	Force Field Analysis Overview
	Adopting Standard Data Element Definitions
	Adopting a Standard Communications Protocol
	Adopting Web Services
	Summary

	Chapter 6 Technical Forces Driving the Adoption of SOA
	Adopting Standard, Enterprise-Wide Software
	Adopting an Object Request Broker
	Adopting an Enterprise Data Warehouse
	Adopting an Enterprise Service Bus
	Message Routers
	Adapters

	Adopting a Service-Oriented Architecture
	Summary

	Chapter 7 Technical Forces Driving the Adoption of Cloud Computing
	Adopting Software as a Service (SaaS)
	Adopting Platform as a Service (PaaS)
	Adopting Service-Oriented Architecture with Cloud Computing
	Summary

	PART III
	Chapter 8 Change Issues
	Change
	Technical Change Issues Diminishing
	Resistance to Change
	Forms of Resistance
	Lack of Training/Understanding
	Power of internal “expert”
	Inertia—why Change?
	Feeling that Jobs may be Threatened
	Not Invented Here
	Our Problems are Special
	Loss of Familiarity, Competence, and Control

	Suggestions for Addressing Resistance to Change
	Selecting the Right People
	Use a Second Set of Eyes
	Really Listen
	Communicate at many Levels
	Seek Appropriate Avenues to Involve People
	Get Resistance out in the Open
	Ask for Participation and Form Partnerships

	Some Resistance Scenarios
	But it’s so Complicated!
	Resistance issues in this scenario
	Suggestions for addressing resistance

	Guerilla Tactics
	Resistance issues in this scenario
	Suggestions for addressing resistance

	More Guerilla Tactics
	Resistance issues in this scenario
	Suggestions for Addressing Resistance

	The Elephant in the Room
	Resistance issues in this scenario
	Suggestions for addressing resistance

	Worksheet for Resistance Issues and Suggestions
	Consolidated Analysis for Adopting an SOA with Cloud Computing
	Summary

	Chapter 9 Tips for Managing Change Issues During Development
	Design as Little as Possible
	Buy a system or use one or more existing services
	Buy a model or adopt a semantic vocabulary

	Write as Little Code as Possible
	Reduce Project Scope
	Use a Methodology
	Use a Second Set of Eyes
	Use Small Teams
	Summary

	Chapter 10 Managing Change with Incremental SOA Analysis
	Tools
	Force Field Analysis
	Worksheet for Resistance Issues and Suggestions
	Decomposition Matrix
	Business Process Diagram
	Data Flow Diagram

	Five Principles for the Incremental SOA Analysis
	Incremental SOA Analysis
	Business Process Analysis Lane
	Analyze the business process with decomposition matrix or other technique
	Modify the business process
	Analyze the business process for services

	Candidate Project Analysis Lane
	Use Force Field Analysis for Each Project
	Use the Resistance Issues and Suggestions Worksheet for Each Project
	Add the Project to the Candidate Pool

	Deployment Selection Lane
	Select a Project with the Best Chance of Success
	Deployment Lane
	Analyze Vocabulary Needed for Interface
	Analyze Parameters Needed for Interface
	Refactor Services Using Decomposition Matrix or other Technique
	Deploy Services and Business Processes

	Vocabulary Management Lane
	Review Industry-Specific Vocabularies
	Review Cross-Industry Vocabularies
	Develop Organization-Specific Vocabulary
	Add to the Organization’s Semantic Vocabulary

	Summary

	PART IV
	Chapter 11 Getting Started with Web Services
	All Web Services Connections Look the Same
	The Impact of Web Services
	Use of Web Services will Likely Spur Innovation
	Start by Experimenting with Web Services
	Use an external service
	Develop an internal service
	Exchange data between existing systems
	Use an ESB
	Staffing issues
	Likely change issues

	Adapt Existing Systems to Use Web Services
	Enterprise database warehouse
	Connect components to Web services
	Additional systems
	Staffing issues
	Likely change issues

	Vision of the Future
	Summary

	Chapter 12 Getting Started with Service-Oriented Architectures
	Establish a Service-Oriented Architecture
	Design considerations
	Staffing issues
	Likely change issues

	What If Things Are Not Going as Planned?
	The data warehouse was growing much faster than expected
	The response time of the services provided by an internal system was inadequate
	Basics of a middle-tier architecture
	Persistence in the middle tier
	Expanded caching
	Protected caching
	Caching performance gain
	Middle-tier databases

	Putting it all together

	Services and Service-Oriented Architectures
	SOA Governance
	Summary

	Chapter 13 Getting Started with Cloud Computing
	Expand Your Internal SOA to Include External Services
	Staffing issues
	Likely change issues

	Governance Considerations
	Legal issues
	Business issues
	Technical issues

	Data Center Considerations
	Availability issues
	Disaster recovery issues

	Examples of Technical Issues Related to Availability
	Failover options for messaging and databases
	Database availability options
	Replication options for messaging and databases

	Cloud Brokers
	Should You Be Your Own Cloud Provider?
	Summary

	Chapter 14 Revisiting the Business Trip in the Not-Too-Distant Future
	Services for C. R.’s Business Trip
	The Future for C. R.’s Organization
	Summary

	PART V
	Chapter 15 Semantic Vocabularies
	Common Semantic Vocabularies
	Address XML
	Computing environment XML
	Content syndication XML
	Customer information XML
	Electronic Data Interchange (EDI) XML
	Geospatial XML
	Human XML
	Localization XML
	Math XML
	Open Applications Group Integration Specification (OAGIS)
	Open Office XML
	Topic Maps XML
	Trade XML
	Translation XML
	Universal Business Language (UBL)
	Universal Data Element Framework (UDEF)

	Specific Semantic Vocabularies
	Accounting XML
	Advertising XML
	Astronomy XML
	Building XML
	Chemistry XML
	Construction XML
	Education XML
	Finance XML
	Food XML
	Government XML
	Healthcare XML
	Human Resources (HR) XML
	Instruments XML
	Insurance XML
	Legal XML
	Manufacturing XML
	News XML
	Oil and gas XML
	Photo XML
	Physics XML
	Publishing XML
	Real estate XML
	Telecommunications XML
	Travel XML

	Chapter 16 Terminology
	Adapters
	Agents
	Analytics
	Application programming interface (API)
	Application server
	Atomic service
	Big data
	Business intelligence (BI)
	Business Process Execution Language (BPEL)
	Business Process Modeling Notation (BPMN)
	Business Process Query Language (BPQL)
	Business Process Specification Schema (BPSS)
	Caching
	Cloud
	Collaboration Protocol Profile/Agreement (CPP/A)
	Community cloud
	Composite service
	CORBA
	Data Cleansing
	Data warehouse
	DCOM
	ebXML registry
	Electronic data interchange (EDI)
	Enterprise service Bus (ESB)
	eXtensible Access Control Markup Language (XACML)
	eXtensible rights Markup Language (XrML)
	eXtensible Stylesheets Language (XSL)
	Extract, Transform, and Load (ETL)
	Failover
	HTTP
	Hybrid cloud
	Infrastructure as a service (IaaS)
	Internet Inter-ORB Protocol (IIOP)
	Java API for XML Parsing (JAXP)
	JSON
	Load leveling
	Loosely coupled
	Mapping
	Mashups
	Message Router
	Meta-Object Facility (MOF)
	Middleware
	Model driven architecture (MDA)
	.NET
	NoSQL database management system
	Object request broker (ORB)
	OMG Interface Definition Language (IDL)
	Partner interface process (PIP)
	Platform as a service (PaaS)
	Public Cloud
	Registry
	REgular LAnguage description for XML (RELAX)
	RELAX NG
	Replication
	Representational state transfer (REST)
	Resource Description Framework (RDF)
	RosettaNet implementation framework (RNIF)
	Schematron
	Security Assertion Markup Language (SAML)
	Service
	Service-Oriented Architecture (SOA)
	Service Provisioning Markup Language (SPML)
	Soap
	Software as a service (SaaS)
	Tree Regular Expressions for XML (TREX)
	Unified Modeling Language (UML)
	Uniform resource identifier (URI)
	Universal data model
	Universal description, discovery, and integration (UDDI)
	Virtual Private Cloud
	Web distributed data exchange (WDDX)
	Web service endpoint definition (WSEL)
	Web services component model
	Web Services Conversation Language (WSCL)
	Web Services Description Language (WSDL)
	Web Services Experience Language (WSXL)
	Web Services Flow Language (WSFL)
	Web Services for interactive applications (WSIA)
	Web Services for Report Portals (WSRP)
	Web services User interface (WSUI)
	Workflow
	XLANG
	XML common biometric format (XCBF)
	XML encryption
	XML Key Management Specification (XKMS)
	XML Linking Language (XLink)
	XML namespaces
	XML Path Language (XPath)
	XML Pointer Language (XPointer)
	XML Protocol (XMLP)
	XML schema
	XML Signature
	XSL formatting objects (XSL-FO)
	XSL Transformations (XSLT)
	XQuery

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

